
Deontic Ambiguities in Legal Reasoning
Guido Governatori

Brisbane, Queensland, Australia

guido@governatori.net

Antonino Rotolo

University of Bologna

Bologna, Italy

antonino.rotolo@unibo.it

ABSTRACT
What happens if the way in which we handle a genuine deontic con-

flict —i.e., a deontic ambiguity— matters regarding the application

of other norms that are not directly affected by that conflict? We

argue that the law requires sometimes propagating the ambiguity

to other norms and sometimes confining it to some norms only.

We explore this issue and model different reasoning patterns. The

problem is addressed in a new variant of Defeasible Deontic Logic.

The contribution of this paper is threefold: (a) we extend the treat-

ment of ambiguity blocking and propagation to Defeasible Deontic

Logic; (b) we discuss reasoning patterns in the law, especially in

criminal law, where we need to deal with both ambiguity block-

ing and ambiguity propagation in the same legal system and logic;

(c) we devise an annotated variant of Defeasible Deontic Logic

where we distinguish literals that must be obtained through an

ambiguity-blocking mechanism from those that are derived using

an ambiguity-propagating mechanism.

CCS CONCEPTS
• Theory of computation→ Proof theory; Automated reason-
ing; • Applied computing→ Law.

KEYWORDS
Defeasible Deontic Logic, Deontic Ambiguities, Ambiguity Block-

ing, Ambiguity Propagation

ACM Reference Format:
Guido Governatori and Antonino Rotolo. 2023. Deontic Ambiguities in Legal

Reasoning. In Nineteenth International Conference on Artificial Intelligence
and Law (ICAIL 2023), June 19–23, 2023, Braga, Portugal. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3594536.3595175

1 INTRODUCTION
Suppose there is a norm 𝑛1 prescribing 𝐶 under condition 𝐴, and

the sanction for not doing𝐶 is 𝑆1; at the same time there is a second

norm 𝑛2, independent of the first one, forbidding 𝐶 when 𝐵 holds;

the violation of the second norm is sanctioned by 𝑆2. Moreover, the

two norms are at the same level in the hierarchy of the underlying

normative system; thus, there are no clear means to asses whether

one of the two norms prevails over the other. Here, we say there is

a genuine deontic conflict. In other words, we say that the deontic

conclusion “𝐶 is obligatory” is ambiguous because two chains of

reasoning exist, with one supporting this conclusion and another

supporting the opposite.

ICAIL 2023, June 19–23, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use.

Not for redistribution. The definitive Version of Record was published in Nineteenth
International Conference on Artificial Intelligence and Law (ICAIL 2023), June 19–23,
2023, Braga, Portugal, https://doi.org/10.1145/3594536.3595175.

While this scenario is well-known in deontic reasoning, it is

less investigated how such a type of conflict can affect further

chains of deontic reasoning. Indeed, suppose there is a third norm

𝑛3, independent of 𝑛1 and 𝑛2, mandating 𝐷 provided that 𝐶 is

permitted. The sanction for the violation of the third norm is 𝑆3.

Consider a case where 𝐴 and 𝐵 hold but 𝐶 and 𝐷 do not. What

are the sanctions (if any) that apply in this situation? What about

if 𝑛3 instead of requiring 𝐶 to be permitted, asks for 𝐶 to be not

forbidden or for being explicitly authorised?

In this paper, we explore this issue and describe different reason-

ing patterns. In fact, sometimes deontic ambiguities and their effects

should be made local and any further reasoning chains should not

be prevented, while sometimes all further reasoning chains should

be blocked as well. If we consider the scenario consisting of norms

𝑛1–𝑛3, then we may have the case in Figure 1, where we prevent

any effect following from the deontic ambiguity.

Figure 1: Ambiguity propagation

Figure 2: Ambiguity blocking

On the other hand, we may have the case in Figure 2, where

we do not prevent any further effect following from the deontic

ambiguity.

This problem has been addressed in propositional Defeasible

Logic [15, 3], which is a sceptical approach to non-monotonic rea-

soning. It is based on a logic programming-like language and is

https://orcid.org/0000-0002-9878-2762
https://orcid.org/0000-0001-5265-0660
https://doi.org/10.1145/3594536.3595175
https://doi.org/10.1145/3594536.3595175


ICAIL 2023, June 19–23, 2023, Braga, Portugal Guido Governatori and Antonino Rotolo

a simple, efficient, but flexible formalism capable of dealing with

many different intuitions of non-monotonic reasoning.

Some variants of Defeasible Logic have been proposed, capturing,

in particular, the intuitions of different reasoning issues, such as

precisely ambiguity blocking and propagation [5]. It was proved

that ambiguity propagation corresponds to the grounded semantics,

while ambiguity blocking to the semantics for standard Defeasible

Logic [9]. However, any formal treatment has yet to be proposed

for Defeasible Deontic Logic [10].

The contribution of this paper is threefold:

• We extend the treatment of ambiguity blocking and propa-

gation to Defeasible Deontic Logic;

• We discuss reasoning patterns in the law, especially in crimi-

nal law, where we need to deal with both forms of reasoning

in the same legal system and logic;

• We devise an annotated variant of Defeasible Deontic Logic

where we distinguish literals that must be obtained through

an ambiguity-blocking mechanism from those derived using

an ambiguity-propagating mechanism.

The layout of the paper is as follows. Section 2 offers an infor-

mal introduction to Defeasible Deontic Logic. Section 3 identifies

some reasoning patterns, where the distinction between deontic

ambiguity propagation and blocking matters, and which are further

exemplified in Section 4 and 5 in regard to the principle of legality

in criminal law. Section 6 offers a full presentation of the new logic.

Section 7 illustrates the logic. A summary concludes the paper.

2 DEFEASIBLE DEONTIC LOGIC IN A
NUTSHELL

We assume to work with a rule-based defeasible formalism where

rules correspond to norms of legal systems. In particular, Defeasi-

ble Deontic Logic (DDL) uses knowledge bases called defeasible

theories with three types of elements: (1) facts (denoted by 𝐹 ), (2)

rules (denoted by 𝑅), and (3) superiority relation >. Facts are the

input knowledge describing those indisputable things that are true

beyond any doubt. Rules are the norms used to obtain (normative)

conclusions that are considered plausible, whereas the superiority

relation is thought of as a means to establish whether one rule for

a conclusion might prevail against another rule for the opposite

conclusion.

DDL is standard Defeasible Logic plus the deontic operators O
and P which stand, respectively, for obligations and permissions,

and the operator ⊗ for expressing sanctions or any other obligatory

legal countermeasure that follows from violations of obligations.

Accordingly, an expression 𝑎 ⊗ 𝑏 means that 𝑎 is obligatory. Still, if

such an obligation is violated, then the countermeasure 𝑏 is obliga-

tory (typically, 𝑏 is a sanction or a compensation of the violation

[12]). As often argued in legal theory, norms can be constitutive
or prescriptive. The former are standard (non-deontic) rules, with

arrow ⇒C, while the latter ones are deontic rules, such as

𝛼 : 𝑎1, . . . , 𝑎𝑛 ⇒O 𝑏 ⊗ 𝑐 𝛽 : O𝑐, 𝑑1, . . . , 𝑑𝑚 ⇒P 𝑒.

If 𝛼 is applicable (namely, 𝑎1, . . . , 𝑎𝑛 are the case), then we derive

O𝑏. Suppose we know ¬𝑏, meaning that O𝑏 is violated. In this case,

we derive O𝑐 . Accordingly, if we also know that 𝑑1, . . . , 𝑑𝑚 are the

case, then we conclude that 𝑒 is permitted, i.e., that P𝑒 . Prescriptive
norms thus break down into obligation norms and permissive norms.

A peculiar feature of this formalism (but similar considerations

apply to other logics such as [14]) is that, following [1], it allows

for identifying two reasoning patterns for deriving permissions:

• A permission P𝑎 is derived as a weak permission because

O¬𝑎 is not derivable (in other words, ¬O¬ implies P1);
• A permission P𝑎 is derived as a strong permission because

there is an explicit permissive rule (i.e., a rule having the

form 𝑏1, . . . , 𝑏𝑛 ⇒P 𝑎) for it (and the rule is capable to assert

its conclusion).

A final feature of DDL is that it supports the notion of rule conver-
sion: e.g., given a rule 𝑎1, . . . , 𝑎𝑛 ⇒C 𝑏, if we derive O𝑎1, . . . ,O𝑎𝑛 ,
by conversion we also obtain O𝑏.

3 DEONTIC AMBIGUITY: SOME REASONING
PATTERNS IN THE LAW

First of all, let us define the idea of deontic ambiguity.

Definition 3.1 (Deontic ambiguity). A literal 𝑝 is deontically am-
biguous iff there exist two chains of reasoning with one supporting

the conclusion O𝑝 , while another supporting the conclusion O¬𝑝 ,
and the superiority relation does not resolve this conflict.

We can now consider some reasoning patterns about norms that

matter for handling ambiguity.

The following scenario exemplifies the basic and core reasoning

pattern. Let □ ∈ {O, P,C}.

Pattern 1.

⇒O 𝑞

⇒O ¬𝑞
P𝑞 ⇒□ 𝑟

A real-life instance to illustrate this pattern is the following. In 2019
Sea Watch 3, an NGO ship carrying migrants rescued at sea, was
banned from Italian ports and territorial waters under a policy of the
Italian government. After a two-week standoff, the ship contravened
the prohibition and entered the port of Lampedusa to complete the
rescue mission. As a result, the captain of Sea Watch 3, Ms Carola
Rackete, was arrested for violence against public officers. Ms Rackete
claimed that the international law of the sea required violating this
decree of the Italian government. Suppose that there is no clear way
the determine which legal provision should prevail2. In addition, if re-
fraining from rescuing is permitted, and if an Italian public authority
forces the NGO to rescue, then this is an obstruction of justice and is
a criminal offence. The scenario can be reconstructed as follows (we
assume that rescuing requires entering the port of Lampedusa):

𝑟1 : Endangered_Migrants, SeaWatch3 ⇒O Rescue

𝑟2 : Banned_NGO ⇒O ¬Rescue
𝑟3 : Force_Rescue, P¬Rescue ⇒C Offence

𝑟4 : Offence ⇒OImprisonment

1
This is guaranteed, e.g., in those deontic logics where the permission is the dual of

the obligations: P =def ¬O¬.
2
We know that a judge subsequently ordered her release on the grounds that the

international law of the sea, in fact, required her actions and that international law

prevails over the government decree.



Deontic Ambiguities in Legal Reasoning ICAIL 2023, June 19–23, 2023, Braga, Portugal

Assume that Endangered_Migrants, SeaWatch3, Banned_NGO,
Force_Rescue are true. Then the reasoning runs as follows:

(1) 𝑟1 and 𝑟2 collide and the conflict is not solved, so we can derive
both PRescue and P¬Rescue;

(2) thus 𝑟3 and 𝑟4 are fired, so we have a criminal offence commit-
ted by those who force the NGO to rescue.

A variant of Pattern 1 is the following:
3

Pattern 2.

⇒O 𝑎

𝑎 ⇒C 𝑞

⇒O ∼𝑞
𝑞 ⇒C 𝑟

⇒O ∼𝑟
Here the deontic ambiguity relates to an unsolved conflict where an
obligation would be obtained through a conversion.

A realistic instance illustrating the first three lines of this pattern
is the following. Suppose Mary is an illegal immigrant imprisoned in
country X. Mary is pregnant and is expected to give birth to her baby
in two months in jail. The laws of X state that every baby born in X
will get X-citizenship.

𝑟5 : Imprisoned, Pregnant ⇒OBirth_Jail

𝑟6 : Birth_Jail ⇒C X_Born

𝑟7 : X_Born ⇒C X_Citizen

𝑟8 : Illegal_Immigrant ⇒O ¬X_Citizen

The reasoning runs as follows:
(1) 𝑟5 proves OBirth_Jail;
(2) then, by conversion, 𝑟6 and 𝑟7 prove OX_Born and X_Citizen,

which collides with the conclusion of 𝑟8.

4 AN APPLICATION: PRINCIPLE OF
LEGALITY IN CRIMINAL LAW

Combining different ways of handling deontic ambiguities is para-

mount, for example, in criminal law.

Consider the principle of legality. It can be summarised as follows

(see [4]).

Definition 4.1 (Principle of legality). The following statements

define the principle of legality:

(PL1) Criminal offences and penalties must be prescribed only by

law. Accordingly, no penalty may be imposed upon any per-

son for committing a criminal offence that did not constitute

a criminal offence prior to it being committed and for which

a penalty was not prescribed by law.

(PL2) The definition of criminal offence must be strictly construed,

and the use of analogy in the interpretation of a criminal

offence is prohibited.

As a corollary of the above statements, criminal legality requires

that the law is applied in a fair and just manner.

3
For a literal 𝑙 we will use ∼𝑙 to indicate the complement of 𝑙 , see Section 6 below for

the proper definition.

(PL3) Evidence is assessed through the principle of in dubio pro reo,
meaning that where there are doubts relating to evidence,

the court should adopt the interpretation most favourable to

the accused person.

(PL4) If the law was amended on one or more occasions after a

criminal offence was perpetrated, the law that most favours

the accused must be applied. A penalty heavier than the one

applicable at the time a criminal offence was committed may

not be imposed upon a person convicted of that offence.

Statements (PL1) and (PL2) jointly ensure the deontic closure

of the criminal legal system—the closure rule nullum crimen sine
lege—according to which any 𝑙 which is not prohibited (by criminal

law) is permitted (by criminal law) [1, pp. 176–178] (see also [2]).

As we have recalled in Section 2, any 𝑙 can be proved as a weak

or strong permission: when any 𝑙 is proved as permitted through

the principle nullum crimen sine lege, the literature of deontic logic
qualifies 𝑙 as weakly permitted.

Definition 4.2 (Weak permission and closure of criminal law). Let
𝐷 be any criminal system. Then, for any 𝑙

𝐷 ⊬ O𝑙 ⇒ 𝐷 ⊢ P∼𝑙 . (Weak Permission)

We say that 𝑙 is weakly permitted by the criminal system 𝐷 .

The deontic closure of 𝐷 and the idea of weak permission re-

quire that 𝑙 is weakly permitted precisely because the opposite is not
prohibited.

The interesting case is when statements (PL1)–(PL2) deontically
interplay with (PL3)–(PL4) as illustrated in Pattern 1. The problem

can be in general terms summarised as follows:

• (PL1)–(PL2) lead to prove that 𝑙 is weakly permitted each

time 𝑙 is not prohibited;

• If the derivation of P𝑙 is a precondition for the criminal

punishment of a crime, should we derive anyway P𝑙? Indeed,
(PL3)–(PL4) would push for adopting the legal solution

which most favours the accused.

The example discussed above shows that a precondition for a

criminal offence is that a permission is obtained. What type of

permission do we need to derive? Would it be a weak permission

enough? In fact, one could argue that weak permission should

always be coherent with the favor rei principle (see Definition 4.1),

thus P¬Rescue cannot be a weak permission. Alternatively, one

could say that the principle of legality, in the presence of 𝑟3, should

simply prevent the derivation ofORescue andO¬Rescue and should
not support the derivation of P¬Rescue.

In general, we may have different alternative scenarios.

Consider this example.

Example 4.3. Consider this case again:

𝐷 = (
𝐹 = {¬𝑝}
𝑅 = {𝑟9 : ⇒O 𝑞, 𝑟10 : ⇒O ¬𝑞, 𝑟11 : P𝑞 ⇒O 𝑝 ⊗ 𝑠}
)

Rule 𝑟11 states that P𝑞 is a precondition for its application and,

jointly with 𝐹 , it leads to a criminal punishment (𝑠 as a sanction

following from the violation ofO𝑝). Since P𝑞 would be derived here



ICAIL 2023, June 19–23, 2023, Braga, Portugal Guido Governatori and Antonino Rotolo

as a weak permission on the basis of the principle of legality ((PL1)–
(PL2)), then this deontic conclusion is not acceptable because it

would be in contrast with statements (PL3)–(PL4).

Pattern 3 (Afflictive Weak Permission). Let 𝐷 be a criminal
system consisting of a set 𝐹 of facts, a set 𝑅 of norms, and a superiority
relation >. If

• 𝑟 : 𝑎1, . . . , 𝑎𝑛 ⇒O 𝑐1 ⊗ 𝑐2 ⊗ · · · ⊗ 𝑐𝑚 ∈ 𝑅;
• 𝐷 ⊬ O∼𝑝 ;
• 𝐷, P𝑝 ⊢ O𝑐 𝑗 , 1 < 𝑗 ≤ 𝑚;
• If we remove 𝑟 from 𝐷 we obtain 𝐷′ such that 𝐷′ ⊬ O𝑐 𝑗 ;

then P𝑝 is an afflictive weak permission in𝐷 andWeakPermission
must not hold.

On the contrary, if weak permission is not critical for deriving a

punishment, then it can be smoothly derived, and all conclusions

depending on it could follow as well.

Pattern 4 (Non-afflictive Permission). Let 𝐷 be a criminal
system consisting of a set 𝐹 of facts, a set 𝑅 of norms, and a superiority
relation >. If P𝑝 is not an afflictive weak permission, then Weak
Permission must hold.

Notice that a non-afflictive permission can be of two types: (1) it

is a weak permission, but it is not critical in deriving punishments,

(2) it is not a weak permission since it is derived using a permissive

norm of the form 𝑎1, . . . , 𝑎𝑛 ⇒P 𝑝 .

5 AMBIGUITY BLOCKING AND AMBIGUITY
PROPAGATION: FURTHER REMARKS

Ambiguity blocking and ambiguity propagation are often seen as

incompatible facets of non-monotonic reasoning, and they corre-

spond to different semantics. As we have said, an ambiguity occurs

when there are two competing rules (rules for conflicting conclu-

sions) and no (clear) mechanisms to resolve the conflict exist. Thus,

sceptical non-monotonic formalisms prevent the conclusion of a

contradiction, but at the same time, they discard the conclusion

of both rules. Hence, none of the two opposite conclusions holds.

In other words, there is some ambiguity about which of the two

conclusions hold. However, it is possible that the opposite con-

clusions can be part of the preconditions of other rules. Consider,

for example, the scenario where there are two equally compelling

different pieces of evidence, one supporting the case that a person

was legally responsible for A and the second that the person was

not responsible for A. Moreover, if the person was responsible for

A, then the person is found guilty. However, according to the pre-

sumption of innocence, a person is assumed to be not guilty. The

following set of rules can represent this situation:

𝑟1 : evidence1 ⇒ responsible

𝑟2 : evidence2 ⇒ ¬responsible
𝑟3 : responsible ⇒ guilty

𝑟4 : ⇒ ¬guilty
Where rule 𝑟3 prevails over rule 𝑟4, i.e., 𝑟3 > 𝑟4. In this sce-

nario, given the two pieces of evidence, we cannot assert whether

responsible or ¬responsible holds; thus, the proposition responsible

is ambiguous. A statement is ambiguous when there is an argument

supporting it and an argument for its opposite, and there are no

means to determine if one of the two arguments is stronger/defeats

the other. However, in this situation, we can go on since we cannot

assert that responsible holds, but rule 𝑟4 (encoding the so-called

presumption of innocence) vacuously holds, and we can conclude

¬guilty.
However, suppose that, in addition to the conditions stipulated

above, if a person was wrongly accused, then the person is entitled

to some compensation. This can be encoded by the following two

rules:

𝑟5 : ¬guilty ⇒ compensation

𝑟6 : ⇒ ¬compensation

where 𝑟5 > 𝑟6. If we continue with our reasoning, rule 𝑟5 is applica-

ble; it defeats 𝑟6, allowing us to establish that “compensation” holds.

However, the two pieces of evidence were equally reliable; it does

not sound right that the person was wrongly accused. Indeed, it

was ambiguous whether the accused was responsible or not. This

scenario illustrates that we have to account for two forms of defeasi-

bility: ambiguity blocking to block the ambiguity and conclude “not

guilty” and ambiguity propagation to propagate the ambiguity to

compensation, to prevent it from holding. Moreover, [7] argues that

these two forms of defeasibility account for different (legal) proof

standards: ambiguity propagation to the beyond a reasonable doubt

standard and ambiguity blocking to the preponderance of evidence

proof standard. The question is whether there are non-monotonic

formalisms that can accommodate the two competing (and some-

how incompatible) intuitions simultaneously. Variants of Defeasible

Logic that accommodate the two intuitions exist. Moreover, [8] pro-

poses a defeasible logic approach where the two variants co-exist

and their conclusions can be used simultaneously. In the rest of the

paper, we examine how to integrate such an approach to obtain a

novel Defeasible Deontic Logic capable of handling both intuitions

in a deontic setting to address the issues introduced in Section 4.

6 DEFEASIBLE DEONTIC LOGIC
Defeasible Logic is a constructive non-monotonic formalism. The

logic has at its heart a constructive proof theory. The key notion

is the notion of derivation. As usual, a derivation is a sequence of

expressions either given or derived from previous steps according

to the appropriate inference rules (or proof conditions in Defeasible

Logic parlance). A characteristic of Defeasible Logic is that the

elements of a derivation carry more information; more specifically,

each step of a derivation consists of three elements: a logical for-

mula, the indication of how the formula has been derived (either as

a positive proof or as a refutation), and the strength of its derivation.

The strength and derivation type are encoded in so-called proof tag.
Notice that the constructive proof theory of the logic allows us to

justify and explain every step of a derivation by indicating what

rules (corresponding to norms) or facts are required/responsible

for the step. Defeasible Deontic Logic extends Defeasible Logic to

cover deontic rules and deontic operators and inherits the features

of the proof theory, accommodating in it the deontic aspects. For

a detailed account of Defeasible Deontic Logic for legal reasoning

we refer the reader to [13].

In this paper, we extend the language of Defeasible Deontic Logic

by allowing in the language components of the proof theory. Thus



Deontic Ambiguities in Legal Reasoning ICAIL 2023, June 19–23, 2023, Braga, Portugal

formulas can be annotated with what we call proof labels. The idea

is that when we have an annotated formula in the antecedent of a

rule, the label specifies the standard according to which the formula

has to be proved for the rule to be applicable.

We start by defining the language of a defeasible deontic theory.

Let PROP be a set of propositional atoms, and Lab be a set of

arbitrary labels (the names of the rules).

Accordingly, PLit = PROP ∪ {¬𝑙 | 𝑙 ∈ PROP} is the set of plain
literals. The set of deontic literals ModLit = {□𝑙,¬□𝑙 | 𝑙 ∈ PLit ∧
□ ∈ {O, P}}. Finally, the set of literals is Lit = PLit ∪ModLit. The

complement of a literal 𝑙 is denoted by ∼𝑙 : if 𝑙 is a positive literal 𝑝
then ∼𝑙 is ¬𝑝 , and if 𝑙 is a negative literal ¬𝑝 then ∼𝑙 is 𝑝 . Note that
we will not have specific rules nor modality for prohibitions, as we

will treat them according to the standard duality that something is

forbidden iff the opposite is obligatory (i.e., O¬𝑝).

Definition 6.1 (Defeasible Deontic Theory). A defeasible deontic
theory 𝐷 is a tuple (𝐹, 𝑅, >), where 𝐹 is the set of facts, 𝑅 is the

set of rules, and > is a binary relation over 𝑅 (called superiority

relation).

Specifically, the set of facts 𝐹 ⊆ PLit denotes simple pieces of

information that are always considered true, like “Sylvester is a cat”,

formally 𝑐𝑎𝑡 (𝑆𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟 ). In this paper, we subscribe to the distinc-

tion between the notions of obligations and permissions, and that

of norms, where the norms in the system determine the obligations

and permissions in force in a normative system. A Defeasible De-

ontic Theory is meant to represent a normative system, where the

rules encode the norms of the systems, and the set of facts corre-

sponds to a case. As wewill see below, the rules are used to conclude

the institutional facts, obligations and permissions that hold in a

case. Accordingly, we do not admit obligations and permissions as

facts of the theory.

The set of rules 𝑅 contains three types of rules: strict rules, defea-
sible rules, and defeaters. Rules are also of two kinds:

• Constitutive rules (non-deontic rules) 𝑅C model constitutive

statements (count-as rules);

• Deontic rules to model prescriptive behaviours, which are

either obligation rules 𝑅O which determine when and which

obligations are in force, or permission rules which represent

strong (or explicit) permissions 𝑅P.

Lastly, > ⊆ 𝑅 ×𝑅 is the superiority (or preference) relation, which is

used to solve conflicts in case of potentially conflicting information.

A theory is finite if the set of facts and rules are so.

A strict (constitutive) rule is a rule in the classical sense: when-

ever the premises are indisputable, so is the conclusion. The state-

ment “All computing scientists are humans” is hence formulated

through the strict rule
4

CScientist (𝑋 ) →C human(𝑋 ),

On the other hand, defeasible rules are to conclude statements

that can be defeated by contrary evidence. In contrast, defeaters

4
Here, we introduce informally the symbols to represent different types of rules, which

are formally defined below in Definition 6.3, where→ denotes a strict rule,⇒ for a

defeasible rule, and{ for a defeated. As usual in Defeasible Logic, see for example, [3],

we consider only a propositional version of this logic, and we do not consider function

symbols. Every expression with variables represents the finite set of its variable-free

instances.

are special rules whose only purpose is to prevent the derivation of

the opposite conclusion. Accordingly, we can represent the state-

ment “Computing scientists travel to the city of the conference”

through a defeasible rule, whereas “During pandemic travels might

be prohibited” through a defeater, like

CScientist, PaperAccepted ⇒C TravelConference

Pandemic {C ¬TravelConference.

On the other hand, a prescriptive behaviour like “At traffic lights it

is forbidden to perform a U-turn unless there is a ‘U-turn Permitted’

sign” can be formalised via the general obligation rule

AtTrafficLight ⇒O ¬UTurn

and the exception through the permissive rule

UTurnSign ⇒P UTurn.

Following the ideas of [12], obligation rules gain more expres-

siveness with the sanction operator ⊗ for obligation rules, which

is to model sanction chains of obligations. Intuitively, 𝑎 ⊗ 𝑏 means

that 𝑎 is the primary obligation, but if for some reason we fail to

comply with 𝑎 then 𝑏 becomes the new obligation in force that

sanctions the violation of O𝑎. This operator is used to build chains

of preferences called ⊗-expressions.
The formation rules for ⊗-expressions are: (i) every plain literal

is an ⊗-expression, (ii) if𝐴 is an ⊗-expression and 𝑏 is a plain literal

then 𝐴 ⊗ 𝑏 is an ⊗-expression [10].

In general, an ⊗-expression has the form ‘𝑐1 ⊗ 𝑐2 ⊗ · · · ⊗ 𝑐𝑚 ’,

and it appears as consequent of a rule ‘𝐴(𝛼) ↩→O 𝐶 (𝛼)’ where
𝐶 (𝛼) = 𝑐1 ⊗ 𝑐2 ⊗ · · · ⊗ 𝑐𝑚 ; the meaning of the ⊗-expression is: if

the rule is allowed to draw its conclusion, then 𝑐1 is the obligation

in force, and only when 𝑐1 is violated then 𝑐2 becomes the new in

force obligation, and so on for the rest of the elements in the chain.

So in this setting, 𝑐𝑚 stands for the last chance to comply with the

prescriptive behaviour enforced by 𝛼 , and in case 𝑐𝑚 is violated as

well, then we will result in a non-compliant situation.

For instance, the previous prohibition to perform a U-turn can

foresee a compensatory fine, like

AtTrafficLight ⇒O ¬UTurn ⊗ PayFine

that has to be paid in case someone does perform an illegal U-turn.

It is worth noticing that we admit ⊗-expressions with only one

element. The intuition, in this case, is that the obligatory condition

does not admit compensatory measures or, in other words, that it

is impossible to recover from its violation.

Finally, we introduce the notion of annotated literal [8].

Definition 6.2 (Annotated Literal). Let Π be a set of proof labels.

An annotated literal is an expression

𝜆𝑙

where the annotation 𝜆 = ±𝜇 such that the sign ± ∈ {+,−}, and he

proof label 𝜇 ∈ Π; moreover the literal 𝑙 ∈ Lit.

The meaning of an annotated literal is that the literal is provable

or refuted with the “strength” indicated by the proof tag. If the sign

is +, the literal is provable with strength 𝜆, and if it is −, the literal is
refuted with strength 𝜆. Defeasible Deontic Logic is a constructive

logic, thus −𝜆𝑙 means that it is provable that it is not possible to



ICAIL 2023, June 19–23, 2023, Braga, Portugal Guido Governatori and Antonino Rotolo

prove 𝑙 with strength 𝜆. In this paper, we deal with the following

set of proof labels:

Π = {Δ, 𝛿, 𝜕, 𝜎}
The precise meaning of the proof labels will be provided by the

formal definitions in the rest of the paper to introduce them in the

course of derivations. However, they have the following intuitive

meaning:

• Δ: there is a monotonic proof (a proof using strict rules and

facts);

• 𝛿 : there is a defeasible derivation that propagates ambigui-

ties;

• 𝜕: there is a defeasible derivation that blocks ambiguities;

• 𝜎 : there is a defeasible “credulous” derivation (essentially,

ignoring unresolved conflicts).

Defeasible Deontic Logic is a non-monotonic rule-based formal-

ism, and we have already informally introduced the notion of a rule.

Formally a rule is defined as below.

Definition 6.3 (Rule). A rule is an expression of the form

𝑟 : 𝑎1, . . . , 𝑎𝑛, 𝜆1𝑏1, . . . , 𝜆𝑚𝑏𝑚 ↩→□ 𝑐,
where

(1) 𝑟 ∈ Lab is the unique name of the rule;

(2) {𝑎1, . . . , 𝑎𝑛} is a (possibly empty) set of literals;

(3) {𝜆1𝑏1, . . . 𝜆𝑚𝑏𝑚} is a (possibly empty) set of annotated liter-

als;

(4) An arrow ↩→ ∈ {⇒,{} denoting, respectively, defeasible
rules, and defeaters;

(5) □ ∈ {C,O, P};
(6) 𝑐 , which is either

(a) a single plain literal 𝑙 ∈ PLit, if either (i) ↩→ ≡ { or (ii)

□ ∈ {C, P}, or
(b) an ⊗-expression, if □ ≡ O.

If □ = C, then the rule is used to derive non-deontic literals

(constitutive statements), whilst if□ isO or P, then the rule is used to
derive deontic conclusions (prescriptive statements). {𝑎1, . . . , 𝑎𝑛} ∪
{𝜆1𝑏1, . . . , 𝜆𝑚𝑏𝑚} is the antecedent (or body) of 𝑟 , denoted by 𝐴(𝑟 ).
We can split the antecedent of a rule into some subsets: 𝐴C (𝑟 ) is
the set of literals in 𝐴(𝑟 ) not in the scope of a deontic operator;

for □ ∈ {O, P} 𝐴□ (𝑟 ) is the subset of 𝐴(𝑟 ) of deontic literals, and
𝐴𝜆 (𝑟 ) = {𝜆1𝑏1, . . . , 𝜆𝑚𝑏𝑚} is the set of annotated literal in the

antecedent of 𝑟 . 𝑐 is the conclusion of the rule, noted as 𝐶 (𝑟 ). The
conclusion 𝐶 (𝑟 ) is a single literal in case □ = {C, P}; in case □ = O,
then the conclusion is an ⊗-expression. Note that ⊗-expressions
can only occur in prescriptive rules though we do not admit them

on defeaters (Condition 6.(a).i), see [10] for a detailed explanation.

We use some abbreviations on sets of rules. The set of strict rules

in 𝑅 is 𝑅𝑠 , the set of defeasible rules is 𝑅𝑑 , and the set of strict and

defeasible rules is 𝑅𝑠𝑑 . 𝑅
□ [𝑙] is the rule set appearing in 𝑅 with head

𝑙 and modality □, while 𝑅O [𝑙, 𝑖] denotes the set of obligation rules

where 𝑙 is the 𝑖-th element in the ⊗-expression. The abbreviations
can be combined.

In the body of a rule, we have two types of literals: “normal”

literals and annotated literals. For a rule to be applicable, the normal

literals must be provable with whatever conditions are required

to prove the conclusion with a given strength. On the contrary,

annotated literals specify their required strength independently of

what type of conclusion we want to achieve.

Example 6.4. Consider the following rule

𝑟 : 𝑎, P𝑏, +𝜕𝑐,−𝛿O¬𝑐 ⇒O 𝑑 ⊗ ¬𝑒
The rule is a defeasible prescriptive rule for 𝑑 (and ¬𝑒); thus the rule
is in𝑅O

𝑑
[𝑑] and in𝑅O

𝑑
[¬𝑒, 2]. Moreover,𝐴(𝑟 ) = {𝑎, P𝑏, +𝜕𝑐,−𝛿O¬𝑐},

𝐴□ (𝑟 ) = P𝑏,O¬𝑐 and 𝐴𝜆 (𝑟 ) = {+𝜕𝑐,−𝛿O¬𝑐}. The intuitive mean-

ing of the rule is that: we are able to infer that𝑑 is obligatory (and its

violation is compensated by the prohibition of 𝑒) provided that the

normal literals 𝑎 and P𝑏 hold (according to the normal conditions

to infer the conclusion of the rule); in addition, 𝑐 must be positively

proved using the ambiguity blocking standard, but O¬𝑐 must be

refuted with the ambiguity propagation standard.

In addition to the strength of a derivation, we can specify the

mode of the derivation. The mode indicates the type of the last

rule used to derive the conclusion. As discussed before, we have

constitutive rules and regulative rules (prescriptive or obligation

and permissive rules). The proof tags extend the proof labels to in-

corporate this aspect. Accordingly, a proof tag is defined as follows.

Definition 6.5 (Tagged modal formula). Let Π = {Δ, 𝛿, 𝜕, 𝜎} be a
set of proof label, and {C,O, P} be the set of modalities. A tagged
formula is an expression of the form

±𝜆□𝑙
where ± ∈ {+,−}, 𝜆 ∈ Π, □ ∈ {C,O, P}, and 𝑙 ∈ PLit. The meaning

of the tagged literal ±𝜆□𝑙 is:
• +𝜆□𝑙 : 𝑙 is provable with the strength corresponding to 𝜆 and

mode □,
• −𝜕□𝑙 : 𝑙 is refuted with the strength corresponding to 𝜆 and

mode □,

Accordingly, the meaning of +𝜕O𝑝 is that 𝑝 is provable as an

obligation using the ambiguity blocking proof standard, and −𝛿P¬𝑝
is that we have a refutation for the permission of ¬𝑝 using the

ambiguity propagating proof standard. Similarly, for the other com-

binations.

As we will shortly see in the proof conditions and definitions

when rules are applicable or discarded, one of the key ideas of

Defeasible Deontic Logic is that we use tagged modal formulas to

determine what formulas are (defeasibly) provable or rejected given

a theory and a set of facts (used as input for the theory). Therefore,

when we have asserted a tagged modal formula, let us say +𝜕O𝑙 in
a derivation (see Definition 6.6 below), we can conclude that the

obligation of 𝑙 (O𝑙) follows from the rules and the facts and that

we used a prescriptive rule to derive 𝑙 and using the conditions

blocking ambiguity, given that the proof label is 𝜕; similarly for

permission (using a permissive rule). However, the C modality is

silent, meaning that we do not put the literal in the scope of the C
modal operator, thus for +𝛿C𝑙 , the derivation simply asserts that

𝑙 holds when we propagate the ambiguity (and not that C𝑙 holds,
even if the two have the same meaning). For the negative cases (i.e.,

−𝜕□𝑙), the interpretation is that it is impossible to derive 𝑙 with a

given mode. Accordingly, we read −𝜕O𝑙 as it is impossible to derive

𝑙 as an obligation. For □ ∈ {O, P}, we are allowed to infer ¬□𝑙 ,
giving a constructive interpretation of the deontic modal operators.



Deontic Ambiguities in Legal Reasoning ICAIL 2023, June 19–23, 2023, Braga, Portugal

Notice that this is not the case for C, where we cannot assert that
∼𝑙 holds (this would require +𝛿C∼𝑙 ); in the logic, failing to prove 𝑙

does not equate to proving ¬𝑙 .
We will use the term conclusions and tagged modal formulas

interchangeably.

The definition of proof is also the standard in DDL.

Definition 6.6 (Proof). Given a defeasible deontic theory 𝐷 , a

proof 𝑃 of length𝑚 in 𝐷 is a finite sequence 𝑃 (1), 𝑃 (2), . . . , 𝑃 (𝑚)
of tagged modal formulas, where the proof conditions given in the

rest of the paper hold.

Given a proof 𝑃 , 𝑃 (1..𝑛) denotes the first 𝑛 steps of 𝑃 , and we

also use the notational convention 𝐷 ⊢ ±𝜆□𝑙 , meaning that there is

a proof 𝑃 for ±𝜆□𝑙 in 𝐷 .

We now introduce the proof conditions for definite derivations

and refutations (corresponding tomonotonic forward-looking chain-

ing of rules), sceptical defeasible derivations and refutations, and

support an unsupported (essentially corresponding to credulous

derivations and refutations ignoring unresolved conflicts).

The definition will be given in a general abstract form that must

be instantiated by the appropriate definitions of what it means for

a rule to be applicable, supported, discarded and defeated. These

definitions depend on the proof tags one wants to characterise.

Definition 6.7 (Definite derivation).
If 𝑃 (𝑛 + 1) = +Δ□𝑝 then either

(1) 𝑝 ∈ 𝐹 or

(2) there is an applicable strict rule for 𝑝 .

Definition 6.8 (Definite refutation).
If 𝑃 (𝑛 + 1) = −Δ□𝑝 then

(1) 𝑝 ∉ 𝐹 and

(2) all strict rules for 𝑝 are discarded

Intuitively, the idea behind definite derivations is that there is a

chain of (definitely) applicable strict rules, where a rule is definitely

applicable where all the normal literals in its body are definitely

provable and the annotated literals are provable with the required

strengths and modes. Conversely, to refute a literal in the definite

sense, we have to show that it is impossible to prove it using only

facts and strict rules. Hence, we must have that all rules for that

conclusion are definitely discarded. A rule is discarded if one of the

normal elements of the body is not definitely provable or at least

one of the annotated literals in the body is not provable according

to the specification of its annotation.

In addition to the above intuitions, Defeasible Deontic Logic sup-

ports the notion of rule conversion. More specifically, a constitutive

rule can be used to derive a deontic conclusion (either an obligation

or a permission) when (i) the body of the rule is not empty, and (ii)

all the literals in the body are not in the scope of deontic operators,

and they are provable with the same deontic operator. For example,

the constitutive rule

𝑟 : 𝑎, 𝑏, +𝜕𝑐 →C 𝑑 (1)

can be used to support the derivation of O𝑑 if we can prove 𝑎, 𝑏

and 𝑐 as obligations.

Formally, the intuitions above are formalised by the following

definitions.

Definition 6.9 (Δ-applicable). A strict rule 𝑟 for 𝑝 is definitely

applicable at step 𝑛 + 1 of a derivation 𝑃 iff

(1) 𝑟 ∈ 𝑅□ [𝑝] and ∀𝑎 ∈ 𝐴(𝑟 ):
(a) if 𝑎 ∈ PLit, then +ΔC𝑎 ∈ 𝑃 (1..𝑛);
(b) if 𝑎 = □𝑏, then +Δ□𝑏 ∈ 𝑃 (1..𝑛);
(c) if 𝑎 = ¬□𝑏, then −Δ□𝑏 ∈ 𝑃 (1..);
(d) if 𝑎 = 𝜆𝑏, then 𝜆𝑎 ∈ 𝑃 (1..𝑛).

(2) 𝑟 ∈ 𝑅C [𝑝], □ ∈ {O, P}, 𝐴(𝑟 ) ≠ ∅, 𝐴□ (𝑟 ) = ∅ and ∀𝑎 ∈ 𝐴(𝑟 ):
(a) if 𝑎 ∈ PLit, then +Δ□𝑎 ∈ 𝑃 (1..);
(b) if 𝑎 = 𝜆𝑏, 𝑏 ∈ PLit, then 𝜆□𝑏 ∈ 𝑃 (1..𝑛).

Accordingly, for the rule in (1) to be Δ-applicable we need to have
a proof where we have +ΔC𝑎, +ΔC𝑏 and +𝜕C𝑐 . Moreover, to use

the same rule for the derivation of +ΔO𝑐 , we require the derivation

of +ΔO𝑎, +ΔO𝑏 and +𝜕O𝑐 .

Definition 6.10 (Δ-discarded). A strict rule 𝑟 for 𝑝 is definitely

discarded at step 𝑛 + 1 of a derivation 𝑃 iff

(1) 𝑟 ∉ 𝑅□ [𝑝] or ∃𝑎 ∈ 𝐴(𝑟 ):
(a) if 𝑎 ∈ PLit, then −ΔC𝑎 ∈ 𝑃 (1..𝑛);
(b) if 𝑎 = □𝑏, then −Δ□𝑏 ∈ 𝑃 (1..𝑛);
(c) if 𝑎 = ¬□𝑏, then +Δ□𝑏 ∈ 𝑃 (1..);
(d) if 𝑎 = ±𝜆𝑏, then ∓𝜆𝑎 ∈ 𝑃 (1..𝑛).

(2) 𝑟 ∈ 𝑅C [𝑝], □ ∈ {O, P}, and either 𝐴(𝑟 ) = ∅, 𝐴□ (𝑟 ) ≠ ∅ or

∃𝑎 ∈ 𝐴(𝑟 ):
(a) if 𝑎 ∈ PLit, then −Δ□𝑎 ∈ 𝑃 (1..);
(b) if 𝑎 = ±𝜆𝑏, 𝑏 ∈ PLit, then ∓𝜆□𝑏 ∈ 𝑃 (1..𝑛).

Note that the positive and negative proof conditions (and the

notions used inside them) can be obtained from each other by

applying the principle of strong negation (explained below) to the

definition of applicability. The strong negation principle applies the

function that simplifies a formula by moving all negations to an

innermost position in the resulting formula, replacing the positive

tags with the respective negative tags, and the other way around,

see [11]. Positive proof tags ensure effective decidable procedures

to build proofs; the strong negation principle guarantees that the

negative conditions provide a constructive and exhaustive method

to verify that deriving the given conclusion is impossible.

Defeasible derivations in Defeasible Deontic Logic have an ar-

gumentation like structure, where the first step is to provide an

argument (i.e., an applicable rule) for the conclusion we want to

prove; then we have to look at all possible attacks to is (i.e., rules for

the opposite conclusion); finally, we have to rebut the attacks, either

to undercut them or to counterattack with a stronger argument.

The schemas for ambiguity blocking and ambiguity propagation

have the same structure, but for ambiguity propagating, we make

it simpler to attack an argument and harder to rebut. Accordingly,

following [5], the proof conditions in Definition 6.11 and 6.12 cover

the case for defeasible derivation and refutation for the ambigu-

ity blocking (±𝜕) and ambiguity propagation (±𝛿) variants of the
logic. The difference between the two variants is how the notions

of applicability, discarded, supported, unsupported and defeated

are defined.

Definition 6.11 (Defeasible derivation).

If 𝑃 (𝑛 + 1) = +df□𝑝 then either

(1) +Δ□𝑝 ∈ 𝑃 (1..𝑛), or



ICAIL 2023, June 19–23, 2023, Braga, Portugal Guido Governatori and Antonino Rotolo

(2) the following three conditions hold

(.1) −Δ□∼𝑝 ∈ 𝑃 (1..𝑏) and
(.2) there is an applicable strict or defeasible rule for 𝑝 and

(.3) every rule for ∼𝑝 is either

(.1) unsupported or

(.2) defeated.

Definition 6.12 (Defeasible refutation).
If 𝑃 (𝑛 + 1) = −df□𝑝 then

(1) +Δ□𝑝 ∈ 𝑃 (1..𝑛), and
(2) either

(.1) +Δ□∼𝑝 ∈ 𝑃 (1..𝑏), or
(.2) every strict or defeasible rule for 𝑝 is discarded, or

(.3) there is a rule for ∼𝑝 such that

(.1) the rule is supported

(.2) the rule is undefeated.

For the case of ±𝛿 we have to introduce additional proof condi-

tions: those for the notion of support.

Definition 6.13 (Support).
If 𝑃 (𝑛 + 1) = +𝜎□𝑝 then either

(1) +Δ□𝑝 ∈ 𝑃 (1..𝑛) or
(2) there is a supported strict or defeasible rule 𝑟 for 𝑝 and

for every rule 𝑠 for ∼𝑝 either

(.1) 𝑠 is discarded or

(.2) 𝑠 is not stronger than 𝑟 .

Definition 6.14 (Unsupported).
If 𝑃 (𝑛 + 1) = −𝜎□𝑝 then

(1) −Δ□𝑝 ∈ 𝑃 (1..𝑛) and
(2) for every rule for 𝑝 either

(.1) the rule is unsupported or

(.2) is defeated by an applicable rule for ∼𝑝 .

What we have to do now is to present the definitions when

rules are defeasibly applicable, discarded, supported, unsupported

and defeated. As we alluded to above, these notions depend on the

variants, and they are different for the characterisation of defeasi-

ble derivation in the context of ambiguity blocking and ambiguity

propagation. For space and readability reasons, in what follows we

limit ourselves to the case of obligations and provide the proof con-

ditions (and accessory definition) for +𝜕O and +𝛿O. The negative
proof conditions can be obtained from the already discussed princi-

ple of strong negation. Similarly, the proof condition for constitutive

conclusions and permission can be obtained from the standard defi-

nitions given in the literature (see, for instance, [10, 5, 8]) modified

according to the mechanism illustrated in the rest of this section.

We begin with the case of obligations under ambiguity blocking.

Definition 6.15 (+𝜕O).
If 𝑃 (𝑛 + 1) = +𝜕O𝑝 then either

(1) +ΔO𝑝 ∈ 𝑃 (1..𝑛), or
(2) the following three conditions hold

(.1) −ΔO∼𝑝 ∈ 𝑃 (1..𝑏) and
(.2) ∃𝑟 ∈ 𝑅𝑠𝑑 [𝑝] such that 𝑟 is 𝜕O-applicable for 𝑝 , and

(.3) ∀𝑠 ∈ 𝑅 [∼𝑝] either
(.1) 𝑠 is 𝜕O-discarded for 𝑝 or

(.2) 𝑠 is 𝜕O-defeated for 𝑝 .

The first we have to notice is that ambiguity blocking equates un-

supported with discarded (where in general, discarded is a stronger

notion since it accounts for unresolved conflicts, while unsupported

does not).

Definition 6.16 (𝜕O-applicable). A rule 𝑟 is 𝜕O-applicable at step

𝑛 + 1 of a derivation 𝑃 for 𝑝 iff either

(1) 𝑟 ∈ 𝑅O [𝑝, 𝑖], ∀𝑟 ∈ 𝐴(𝑟 ),
(a) if 𝑎 ∈ 𝑃𝐿𝑖𝑡 , then +𝜕C𝑎 ∈ 𝑃 (1..𝑛),
(b) if 𝑎 = □𝑏, then +𝜕□𝑏 ∈ 𝑃 (1..𝑛),
(c) if 𝑎 = ¬□𝑏, then −𝜕□𝑏 ∈ 𝑃 (1..𝑛),
(d) if 𝑎 = 𝜆𝑏, then 𝜆𝑏 ∈ 𝑃 (1..𝑛); and
(e) ∀𝑐 𝑗 ∈ 𝐶 (𝑟 ), 𝑗 < 𝑖, +𝜕O𝑐 𝑗 ∈ 𝑃 (1..𝑛) and

+𝜕C∼𝑐 𝑗 ∈ 𝑃 (1..𝑛).
(2) 𝑟 ∈ 𝑅C [𝑝], 𝐴(𝑟 ) ≠ ∅, 𝐴□ (𝑟 ) = ∅ and ∀𝑎 ∈ 𝐴(𝑟 ):
(a) if 𝑎 ∈ PLit, then +𝜕O𝑎 ∈ 𝑃 (1..);
(b) if 𝑎 = 𝜆𝑏, 𝑏 ∈ PLit, then 𝜆O𝑏 ∈ 𝑃 (1..𝑛).

A rule is applicable for an obligation if it is an obligation rule such

that all the normal elements in the body are defeasibly provable

(using the ambiguity-blocking standard). In addition, for obligation

rules, we have to consider the conclusion, which can consist of

an ⊗-expression. As discussed above, we are allowed to move to

the next element of an ⊗-expression when the current element is

violated. To have a violation, we need (i) the obligation to be in

force, and (ii) its content does not hold. +𝜕O𝑐𝑖 indicates that the
obligation is in force. For the second part we have two options. The

former, +𝜕C∼𝑐𝑖 means that we have “evidence” that the opposite

of the content of the obligation holds. The latter would be to have

−𝜕C𝑐 𝑗 ∈ 𝑃 (1..𝑛) corresponding to the intuition that we failed to

provide evidence that the obligation has been satisfied. It is worth

noting that the former option implies the latter one. For a deeper

discussion on the issue, see [6].

The second option to have an applicable rule for an obligation

is to use a constitutive rule that converts into an obligation (with

the same mechanism described for definite conclusions, with the

only difference that normal literals are required to be provable as

defeasible obligations).

Definition 6.17 (𝜕O-discarded). A rule 𝑟 is 𝜕O-discarded at step

𝑛 + 1 of a derivation 𝑃 for 𝑝 iff

(1) 𝑟 ∈ 𝑅O [𝑝, 𝑖], ∃𝑟 ∈ 𝐴(𝑟 ),
(a) if 𝑎 ∈ 𝑃𝐿𝑖𝑡 , then −𝜕C𝑎 ∈ 𝑃 (1..𝑛),
(b) if 𝑎 = □𝑏, then −𝜕□𝑏 ∈ 𝑃 (1..𝑛),
(c) if 𝑎 = ¬□𝑏, then +𝜕□𝑏 ∈ 𝑃 (1..𝑛),
(d) if 𝑎 = ±𝜆𝑏, then ∓𝜆𝑏 ∈ 𝑃 (1..𝑛); or
(e) ∃𝑐 𝑗 ∈ 𝐶 (𝑟 ), 𝑗 < 𝑖,−𝜕O𝑐 𝑗 ∈ 𝑃 (1..𝑛) and

−𝜕C∼𝑐 𝑗 ∈ 𝑃 (1..𝑛).
(2) 𝑟 ∈ 𝑅P [𝑝], ∃𝑟 ∈ 𝐴(𝑟 ),
(a) if 𝑎 ∈ 𝑃𝐿𝑖𝑡 , then −𝜕C𝑎 ∈ 𝑃 (1..𝑛),
(b) if 𝑎 = □𝑏, then −𝜕□𝑏 ∈ 𝑃 (1..𝑛),
(c) if 𝑎 = ¬□𝑏, then +𝜕□𝑏 ∈ 𝑃 (1..𝑛),
(d) if 𝑎 = ±𝜆𝑏, then ∓𝜆𝑏 ∈ 𝑃 (1..𝑛);

(3) 𝑟 ∈ 𝑅C [𝑝], and either 𝐴(𝑟 ) = ∅, or 𝐴□ (𝑟 ) ≠ ∅ or ∃𝑎 ∈ 𝐴(𝑟 ):
(a) if 𝑎 ∈ PLit, then −𝜕O𝑎 ∈ 𝑃 (1..);
(b) if 𝑎 = ∓𝜆𝑏, 𝑏 ∈ PLit, then ±𝜆O𝑏 ∈ 𝑃 (1..𝑛).

The notion of a discarded rule is relevant for the attacking phase

of the argumentation like structure. Here, obligation, permission



Deontic Ambiguities in Legal Reasoning ICAIL 2023, June 19–23, 2023, Braga, Portugal

and constitutive rules (converting to obligation) for ∼𝑝 must be

analysed. Indeed, O𝑝 and P∼𝑝 are in conflict, and the conflict must

be resolved. This is why we must incorporate a condition to de-

termine if a permission rule is discarded (not applicable) in this

case.

Definition 6.18 (𝜕O-defeated). A rule 𝑟 is 𝜕O-defeated at step 𝑛 + 1
of a derivation 𝑃 for 𝑝 iff ∃𝑠 ∈ 𝑅 [∼𝑝] such that

(1) 𝑠 is 𝜕O-applicable for 𝑝 and

(2) 𝑠 > 𝑡 .

Finally, only rules capable of producing an obligation can be

used in the counterattacking phase. Thus the notion of “defeated”

consists of identifying rules able to produce an obligation stronger

than non-discarded rules (for an opposing obligation or permission)

We can now move the case of ambiguity propagation. As before,

we focus on the proof conditions for obligations. However, in this

case, we have to introduce some auxiliary proof conditions, the

proof conditions for the notion of support.

Definition 6.19 (+𝛿O).
If 𝑃 (𝑛 + 1) = +𝛿O𝑝 then either

(1) +ΔO𝑝 ∈ 𝑃 (1..𝑛), or
(2) the following three conditions hold

(.1) −ΔO∼𝑝 ∈ 𝑃 (1..𝑏) and
(.2) ∃𝑟 ∈ 𝑅𝑠𝑑 [𝑝] such that 𝑟 is 𝛿O-applicable for 𝑝 , and

(.3) ∀𝑠 ∈ 𝑅 [∼𝑝] either
(.1) 𝑠 is 𝛿O-unsupported for 𝑝 or

(.2) 𝑠 is 𝛿O-defeated for 𝑝 .

For ambiguity propagation, the first main difference is condition

(2.3.1), where the attacking rules are rebutted if unsupported. While

support is a weaker notion than applicable, unsupported is stronger

than discarded. Thus, the proof condition makes it easier to attack

an argument and harder to rebut it.

Definition 6.20 (Support +𝜎O).
If 𝑃 (𝑛 + 1) = +𝜎O𝑝 then either

(1) +ΔO𝑝 ∈ 𝑃 (1..𝑛) or
(2) ∃𝑟 ∈ 𝑅 [𝑝] such that 𝑟 is O-supported for every rule 𝑠 for ∼𝑝

either

(.1) 𝑠 is discarded or

(.2) 𝑠 is not stronger than 𝑟

Definition 6.21 (𝛿O-applicable). A rule 𝑟 is 𝛿O-applicable at step

𝑛 + 1 of a derivation 𝑃 for 𝑝 iff either

(1) 𝑟 ∈ 𝑅O [𝑝, 𝑖], ∀𝑟 ∈ 𝐴(𝑟 ),
(a) if 𝑎 ∈ 𝑃𝐿𝑖𝑡 , then +𝛿C𝑎 ∈ 𝑃 (1..𝑛),
(b) if 𝑎 = □𝑏, then +𝛿□𝑏 ∈ 𝑃 (1..𝑛),
(c) if 𝑎 = ¬□𝑏, then −𝛿□𝑏 ∈ 𝑃 (1..𝑛),
(d) if 𝑎 = 𝜆𝑏, then 𝜆𝑏 ∈ 𝑃 (1..𝑛); and
(e) ∀𝑐 𝑗 ∈ 𝐶 (𝑟 ), 𝑗 < 𝑖, +𝛿O𝑐 𝑗 ∈ 𝑃 (1..𝑛) and

+𝛿C∼𝑐 𝑗 ∈ 𝑃 (1..𝑛).
(2) 𝑟 ∈ 𝑅C [𝑝], 𝐴(𝑟 ) ≠ ∅, 𝐴□ (𝑟 ) = ∅ and ∀𝑎 ∈ 𝐴(𝑟 ):
(a) if 𝑎 ∈ PLit, then +𝛿O𝑎 ∈ 𝑃 (1..);
(b) if 𝑎 = 𝜆𝑏, 𝑏 ∈ PLit, then 𝜆O𝑏 ∈ 𝑃 (1..𝑛).

The definition of O-supported can be obtained from the defini-

tion of 𝛿O-applicable, by replacing the occurrences of 𝛿O with 𝜎O.

The intuition behind 𝛿O-applicable and O-supported is essentially

the same as that for 𝜕O-applicable, where the only difference is the

strength of the derivation involved.

Definition 6.22 (𝛿O-discarded). A rule 𝑟 is 𝛿O-discarded at step

𝑛 + 1 of a derivation 𝑃 for 𝑝 iff

(1) 𝑟 ∈ 𝑅O [𝑝, 𝑖], ∃𝑟 ∈ 𝐴(𝑟 ),
(a) if 𝑎 ∈ 𝑃𝐿𝑖𝑡 , then −𝛿C𝑎 ∈ 𝑃 (1..𝑛),
(b) if 𝑎 = □𝑏, then −𝛿□𝑏 ∈ 𝑃 (1..𝑛),
(c) if 𝑎 = ¬□𝑏, then +𝛿□𝑏 ∈ 𝑃 (1..𝑛),
(d) if 𝑎 = ±𝜆𝑏, then ∓𝜆𝑏 ∈ 𝑃 (1..𝑛); or
(e) ∃𝑐 𝑗 ∈ 𝐶 (𝑟 ), 𝑗 < 𝑖,−𝛿O𝑐 𝑗 ∈ 𝑃 (1..𝑛) and

−𝛿C∼𝑐 𝑗 ∈ 𝑃 (1..𝑛).
(2) 𝑟 ∈ 𝑅P [𝑝], ∃𝑟 ∈ 𝐴(𝑟 ),
(a) if 𝑎 ∈ 𝑃𝐿𝑖𝑡 , then −𝛿C𝑎 ∈ 𝑃 (1..𝑛),
(b) if 𝑎 = □𝑏, then −𝛿□𝑏 ∈ 𝑃 (1..𝑛),
(c) if 𝑎 = ¬□𝑏, then +𝛿□𝑏 ∈ 𝑃 (1..𝑛),
(d) if 𝑎 = ±𝜆𝑏, then ∓𝜆𝑏 ∈ 𝑃 (1..𝑛);

(3) 𝑟 ∈ 𝑅C [𝑝], and either 𝐴(𝑟 ) = ∅, or 𝐴□ (𝑟 ) ≠ ∅ or ∃𝑎 ∈ 𝐴(𝑟 ):
(a) if 𝑎 ∈ PLit, then −𝛿O𝑎 ∈ 𝑃 (1..);
(b) if 𝑎 = ∓𝜆𝑏, 𝑏 ∈ PLit, then ±𝜆O𝑏 ∈ 𝑃 (1..𝑛).

It is easy to verify that the conditions for a rule to be applicable

(or discarded) for an obligation under ambiguity propagation are

similar to the same conditions (and with the samemotivation) under

ambiguity blocking. All we have to do is to replace the occurrence

of 𝜕 with 𝛿 for normal literals.

Definition 6.23 (𝛿O-defeated). A rule 𝑟 is 𝛿O-defeated at step 𝑛+1
of a derivation 𝑃 for 𝑝 iff ∃𝑠 ∈ 𝑅 [∼𝑝] such that

(1) 𝑠 is 𝛿O-applicable for 𝑝 and

(2) not 𝑡 > 𝑠 .

Finally, only rules capable of producing an obligation can be

used in the counterattacking phase. Thus, as we said, the notion of

“defeated” consists of identifying rules that produce an obligation

that is not weaker than an attacking rule.

7 DISCUSSION
In the previous section, we defined a logic that requires literals to be

derived using both ambiguity blocking and ambiguity propagation.

Indeed, with the rule

𝑟 : 𝑎, P𝑏, +𝜕𝑐,−𝛿O¬𝑐 ⇒O 𝑑 ⊗ ¬𝑒

we are able to infer that 𝑑 is obligatory (and its violation is sanc-

tioned by the prohibition of 𝑒) provided that the normal literals 𝑎

and P𝑏 hold (according to the normal conditions to infer the con-

clusion of the rule); in addition, 𝑐 must be positively proved using

the ambiguity blocking standard but O¬𝑐 must be refuted with the

ambiguity propagation standard.

Let us exemplify this idea by elaborating on the scenario pre-

sented in Pattern 1.



ICAIL 2023, June 19–23, 2023, Braga, Portugal Guido Governatori and Antonino Rotolo

Example 7.1. Consider the following Defeasible Deontic Theory:

𝐹 = {Endangered_Migrants, SeaWatch3, Banned_NGO,

Force_Rescue,¬Pay_Fine}
𝑅 = {𝑟1 : Endangered_Migrants, SeaWatch3 ⇒O Rescue,

𝑟2 : Banned_NGO ⇒O ¬Rescue,
𝑟 ′
3
: Force_Rescue, +𝛿P¬Rescue ⇒C Offence,

𝑟 ′
4
: Offence ⇒O Pay_Fine ⊗ Imprisonment,

𝑟12 : Storm ⇒P ¬Rescue,
𝑟13 : + 𝜕Offence,Minor ⇒O ¬Punishable}

>= {⟨𝑟12, 𝑟1⟩}
Assume the underlying normal standard is ambiguity propagation.

Let us modify the case from Pattern 1 as follows:

• 𝑟3 is defined by specifying that P¬Rescue can only be derived
with ambiguity propagation because, on account of 𝑟 ′

4
, it an

afflictive weak permission (see Pattern 3);

• If P¬Rescue is derived from 𝑟12 (by adding Storm to 𝐹 ) we do

not have an afflictive weak permission, thus we can derive

Offence via 𝑟 ′
3
;

• also notice that 𝑟13 constitutes a non-afflictive case and, in

fact, where we can derive Offence with ambiguity blocking

standard.

8 SUMMARY
We developed a new Defeasible Deontic Logic able to treat, in the

same language and reasoning machinery, different ways in which

we handle any genuine deontic conflict—i.e., any deontic ambi-

guity. This problem is of paramount importance in legal systems,

especially in criminal law, where propagating or not an ambiguity

matters regarding the application of other norms not directly af-

fected by the conflict. In particular, being more or less sceptical in

criminal law is critical to be coherent with the principle of legality

and with the deontic closure of the normative system.

Technically, the new logic is a variant of Defeasible Deontic

Logic, dealing with both deontic ambiguity blocking and deontic

propagation in the same legal system and logic. This means devising

an annotated variant of the logic where we distinguish literals that

must be obtained through both mechanisms.

An interesting research line for future investigations concerns

how to extend this analysis to deontic ambiguities in criminal proce-

dure (we mainly worked on examples of substantive criminal law).

As recalled in Section 3 (see [6]), the distinction between ambiguity

blocking and propagation is conceptually relevant in procedural

law. On the other hand, deontic logic has been proven to be useful

to prioritise chains of consecutive actions which has as (final) goal

the decision/solution of a conflict [16].

ACKNOWLEDGMENTS
Partially supported by the Project PE01 “Future AI Research" (FAIR,

PNRR, CUP: J33C22002830006).

REFERENCES
[1] Carlos E. Alchourrón and Eugenio Bulygin. 1971. Normative Systems. LEP

Library of Exact Philosophy. Springer Vienna. isbn: 9783211810194.
[2] Carlos E. Alchourrón and Eugenio Bulygin. 1984. Permission and permissive

norms. In Theorie der Normen. W. Krawietz et al., (Ed.) Duncker & Humblot.

[3] Grigoris Antoniou, David Billington, Guido Governatori, and Michael J. Ma-

her. 2001. Representation results for defeasible logic. ACM Transactions on
Computational Logic, 2, 2, 255–287. doi: 10.1145/371316.371517.

[4] Andrew Ashworth and Jeremy Horder. 2013. Principles of Criminal Law. Oxford
University Press, Oxford.

[5] David Billington, Grigoris Antoniou, Guido Governatori, and Michael J. Maher.

2010. An inclusion theorem for defeasible logic. ACM Transactions in Compu-
tational Logic, 12, 1, article 6. doi: 10.1145/1838552.1838558.

[6] Guido Governatori. 2015. Burden of compliance and burden of violations. In

28th Annual Conference on Legal Knowledge and Information Systems (Frontieres
in Artificial Intelligence and Applications). Antonino Rotolo, (Ed.) IOS Press,

Amsterdam, 31–40. doi: 10.3233/978-1-61499-609-5-31.

[7] Guido Governatori. 2011. On the relationship between Carneades and defeasible

logic. In Fourteenth International Conference on Artificial Intelligence and Law.
Enrico Francesconi and Bart Verheij, (Eds.) ACM, 31–40. doi: 10.1145/2018358

.2018362.

[8] Guido Governatori and Michael J. Maher. 2017. Annotated defeasible logic.

Theory and Practice of Logic Programming, 17, 5–6, 819–836. doi: 10.1017/S147
1068417000266.

[9] Guido Governatori, Michael J. Maher, Grigoris Antoniou, and David Billing-

ton. 2004. Argumentation semantics for defeasible logic. Journal of Logic and
Computation, 14, 5, 675–702. doi: 10.1093/logcom/14.5.675.

[10] Guido Governatori, Francesco Olivieri, Antonino Rotolo, and Simone Scan-

napieco. 2013. Computing strong and weak permissions in defeasible logic.

Journal of Philosophical Logic, 42, 6, 799–829. doi: 10.1007/s10992-013-9295-1.
[11] Guido Governatori, Vineet Padmanabhan, Antonino Rotolo, and Abdul Sattar.

2009. A defeasible logic for modelling policy-based intentions and motivational

attitudes. Logic Journal of the IGPL, 17, 3, 227–265. doi: 10.1093/jigpal/jzp006.
[12] Guido Governatori and Antonino Rotolo. 2006. Logic of violations: a gentzen

system for reasoning with contrary-to-duty obligations. Australasian Journal
of Logic, 4, 193–215. http://ojs.victoria.ac.nz/ajl/article/view/1780.

[13] Guido Governatori, Antonino Rotolo, and Giovanni Sartor. 2021. Logic and the

law: philosophical foundations, deontics, and defeasible reasoning. InHandbook
of Deontic Logic and Normative Reasoning. Vol. 2. Dov M. Gabbay, John Horty,

Xavier Parent, Ron van der Meyden, and Leon van der Torre, (Eds.) College

Publications, London. Chap. 9, 655–760.

[14] David Makinson and Leendert W. N. van der Torre. 2003. Permission from an

input/output perspective. Journal of Philosophical Logic, 32, 4, 391–416. doi:
10.1023/A:1024806529939.

[15] Donald Nute. 1994. Defeasible logic. In Handbook of Logic in Artificial Intel-
ligence and Logic Programming. Vol. 3. Dov M. Gabbay, C.J. Hogger, and J.A.

Robinson, (Eds.), 353–395.

[16] Antonino Rotolo andClara Smith. 2021.Modelling legal procedures. In ICAIL’21:
Eighteenth International Conference for Artificial Intelligence and Law. Juliano
Maranhão and Adam Zachary Wyner, (Eds.) ACM, 220–224. doi: 10.1145/3462

757.3466089.

https://doi.org/10.1145/371316.371517
https://doi.org/10.1145/1838552.1838558
https://doi.org/10.3233/978-1-61499-609-5-31
https://doi.org/10.1145/2018358.2018362
https://doi.org/10.1145/2018358.2018362
https://doi.org/10.1017/S1471068417000266
https://doi.org/10.1017/S1471068417000266
https://doi.org/10.1093/logcom/14.5.675
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1093/jigpal/jzp006
http://ojs.victoria.ac.nz/ajl/article/view/1780
https://doi.org/10.1023/A:1024806529939
https://doi.org/10.1145/3462757.3466089
https://doi.org/10.1145/3462757.3466089

	Abstract
	1 Introduction
	2 Defeasible Deontic Logic in a Nutshell
	3 Deontic Ambiguity: Some Reasoning Patterns in the Law
	4 An Application: Principle of Legality in Criminal Law
	5 Ambiguity Blocking and Ambiguity Propagation: Further Remarks
	6 Defeasible Deontic Logic
	7 Discussion
	8 Summary
	Acknowledgments

