
�e Regorous Approach to Process Compliance

Guido Governatori

NICTA, Brisbane, Australia

Email: guido.governatori@nicta.com.au

Abstract—We propose an ITC (Information and Communic-
ation Technology) approach to support regulatory compliance
for business processes, and we report on the development and
evaluation of a business process compliance checker called
Regorous, based on the compliance-by-design methodology
proposed by Governatori and Sadiq [1].

I. Introduction

Regulatory compliance is the set of activities an enterprise

does to ensure that its core business does not violate relevant

regulations, in the jurisdictions in which the business is

situated, governing the (industry) sectors where the enterprise

operates.

�e activities an organisation does to achieve its business

objectives can be understood as business processes, and

consequently they can be represented by business process

models. On the other hand a normative document (e.g., a

code, a bill, an act) can be understood as a set of clauses, and

these clauses can be represented in an appropriate formal

language. Based on this [2] proposed that business process
compliance is a relationship between the formal representation

of a process model and the formal representation of the

relevant regulations.

Obviously, any approach to automate the checking whether

a business process complies with the regulation governing

has to ensure that it is able to properly model business

processes as well as norms. In the past decades many

approaches to automatise business process compliance have

been proposed. [3], [4] survey the state of the art and list

expected functionalities and other desiderata for compliance

framework. Surprisingly, the current research fails to address

the most fundamental questions: are current compliance

management frameworks (CMFs) able to model norms in

a conceptually sound way? [5] provides a comprehensive

classi�cations of the class of the normative concepts (e.g., ob-

ligations, prohibitions, permissions,. . . ) required for business

process compliance, and introduces their semantics in terms

of business processes. Furthermore, for each requirement it

shows examples from real life acts where the requirement

appears. [6] investigated which CMFs provide direct natural

counterparts of the normative concepts identi�ed in [5]. �e

answer is that, apart some notable exceptions, the coverage

is very limited. �is does not mean that a CMF with a

limited coverage is not able to capture the semantics of the

normative concepts, but that end users have to rely on deep

understanding of the formalisms the frameworks are based

on instead of the templates they provide. �is shi� focus

from the frameworks to the underlying formalisms. Temporal

logics (e.g., LTL and CTL) and Event Calculus have been used

in several CMFs. However, [7] identi�es several shortcomings

in using Event Calculus for the modelling norms. Recently,

[8] shows that when norms are formalised in Linear Temporal

Logi (or, more in general, in logics in the same family), the

evaluation whether a process is compliant produces results

that are not compatible with the intuitive and most natural

legal interpretation. Furthermore, [8] argues that, while

such logics can properly model norms such formalisations

would be completely useless from a process compliance point

of view insofar they would require an external oracle to

identify the compliant executions of the process, and build

the formalisation from the traces corresponding to the traces

deemed legal by the oracle. Accordingly, this means that there

is no need of the formalisation to determine if the process

is compliant or not, since this is done by the oracle. In any

case [9] shows that current CMFs based on temporal logic

are a�ected by the scenario given in [8]. Consequently, the

solutions provided by such CMFs cannot be used to check

compliance of real life business processes with real life norms.

�e contribution of this paper is to show that Regorous,

a compliance framework based on the compliance-by-design

methodology proposed by Governatori and Sadiq [1], [10], is

immune from the problem of not being able to correctly assess

compliance of business processes in scenarios involving per-

missions [8], [9] a�ecting the existing compliance frameworks

based on temporal logic.

�e paper is organised as follows: Sections II, III and IV

outline the formal foundations for modelling business process

compliance. Section V provides a concise presentation of

Regorous and its architecture, and we quickly report on the

results of an empirical evaluation of the framework with an

industry scale pilot project (Section V-A). In Section VI we

introduce the scenario proposed in [8] and used in [9] to show

limitations of compliance frameworks based on temporal logic.

We analyse how the scenario is modelled in Regorous, and

we show that Regorous produces the correct assessment of

compliance. �is indicates that Regorous does not su�er from

the problem a�ecting other compliance frameworks. Finally,

we are going to argue that while Regorous is speci�cally

created for design-time compliance, the approach is equally

valid for run-time compliance and auditing based on process

logs (Section VII).

II. Business Process Modelling

In this section we provide the very basics of business

process modelling, for an extensive presentation see [11].



A business process model is a self-contained, temporal and

logical order in which a set of activities are expected to

be executed to achieve a business goal. Typically a process

model describes what needs to be done and when (control

�ow), who is going to do what (resources), and on what it

is working on (data). Many di�erent formalisms (Petri-Nets,

Process algebras, . . . ) and notations (BPMN, YAWL, EPC, . . . )

have been proposed to represent business process models.

Besides the di�erence in notation, purposes, and expressive

power, business process languages typically contain the

following minimal set of elements: tasks, connectors (control
�ow gateways) and events. A task corresponds to a (complex)

business activity, and connectors (e.g., sequence, and-join, and-

split, (x)or-join, (x)or-split) de�ne the relationships among

tasks to be executed; for the events we restrict ourselves

to the start and end event. �e combination of tasks and

connectors de�nes the possible ways in which a process can

be executed. Where a possible execution, called process trace
or simply trace, is a sequence of tasks and events respecting

the order given by the connectors.

A

B

D

E

C

Figure 1. Example of a business process model in standard BPMN notation

Consider the process in Figure 1, in standard BPMN

notation, where we have a task A followed by an xor split. In

the xor split in one of the branches we have task B followed by

the and-split of a branch with task D, and a brach consisting

of only task E. �e second branch of the xor-split has only

one task: C . �e traces corresponding to the process are

〈start,A,C, end〉,
〈start,A,B,D,E, end〉,
〈start,A,B,E,D, end〉.

Given a process P we will use TP = {t1, t2, . . . } to denote the

set of traces of P .
Compliance is not only about the tasks that an organisation

has to perform to achieve its business goals, but it is concerned

also on their e�ects (i.e., how the activities in the tasks change

the environment in which they operate), and the artefacts

produced by the tasks (for example, the data resulting from

executing a task or modi�ed by the task) [12]. To capture this

aspect [13] proposed to enrich process models with semantic

annotations. Each task in a process model can have a�ached

to it a set of semantic annotations. An annotation is just a set

of formulas giving a (partial) description of the environment

in which a process operates. �en, it is possible to associate

to each task in a trace a set of formulas corresponding to the

state of the environment a�er the task has been executed in

the particular trace. Notice, that di�erent traces can results in

di�erent states, even if the tasks in the traces are the same. In

addition, even if the end states are the same, the intermediate

states can be di�erent. Accordingly, we extend the notion of

trace. First of all, we introduce the function

State : TP × N 7→ 2
L ,

where N is the set of natural numbers and L is the set of

formulas of the language used to model the annotations. Let

us illustrate with an example the meaning of the function

State. Suppose we have the trace

t = 〈A,B,D,E〉,

and that

State(t , 3) = {p,q, r }.

�is means that {p,q, r } is the state resulting a�er executing

D in the trace t (D is the third task in t ); in other terms

we can say that p, q and r are the e�ects of task D in the

trace, and thus p, q and r hold a�er the execution of D in

t . Notice that a trace uniquely determines the sequence of

states obtained by executing the trace. �us, in what follows

we use a trace to refer to a sequence of tasks (and events),

and the corresponding sequence of states.

III. Normative Reqirements

�e scope of norms is to regulate the behaviour of their

subjects and to de�ne what is legal and what is illegal.

Norms typically describe the conditions under which they

are applicable and the normative e�ects they produce when

applied. A comprehensive list of normative e�ects is provided

in [14]. In a compliance perspective, the normative e�ects

of importance are the deontic e�ects (also called normative

positions). �e basic deontic e�ects are: obligation, prohibition
and permission.1

Let us start by consider the basic de�nitions for such

concepts:
2

Obligation A situation, an act, or a course of action to which

a bearer is legally bound, and if it is not achieved or

performed results in a violation.

Prohibition A situation, an act, or a course of action which

a bearer should avoid, and if it is achieved results in a

violation.

Permission Something is permi�ed if the prohibition of it

or the obligation to the contrary do not hold.

Obligations and prohibitions are constraints that limit the

space of action of processes; the di�erence from other types

of constraints is that they can be violated, and a violation

does not imply an inconsistency within a process with the

consequent termination of or impossibility to continue the

business process. Furthermore, it is common that violations

1
�ere are other deontic e�ects, but these can be derived from the basic

ones, see [15].

2
Here we consider the de�nition of such concepts given by the OASIS

LegalRuleML working group. �e OASIS LegalRuleML glossary is available

at h�p://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/

48435/Glossary.doc.



can be compensated for, and processes with compensated

violations are still compliant [1], [16]; for example contracts

typically contain compensatory clauses specifying penalties

and other sanctions triggered by breaches of other contract

clauses [17]. Not all violations are compensable, and uncom-

pensated violations means that a process is not compliant.

Permissions cannot be violated, thus permissions do not play

a direct role in compliance; they can be used to determine that

there are no obligations or prohibitions to the contrary, or to

derive other deontic e�ects. Legal reasoning and legal theory

typically assume a strong relationship between obligations

and prohibitions: the prohibition of A is the obligation of ¬A
(the opposite of A), and then if A is obligatory, then ¬A is

forbidden [15]. In this paper we will subscribe to this position,

given that our focus here is not on how to determine what is

prescribed by a set of norms and how to derive it. Accordingly,

we can restrict our analysis to the notion of obligation.
Compliance means to identify whether a process violates

or not a set of obligations. �us, the �rst step is to determine

whether and when an obligation is in force. Hence, an

important aspect of the study of obligations is to understand

the lifespan of an obligation and its implications on the

activities carried out in a process. As we have alluded to

above norms give the conditions of applicability of obligations.

�e question then is how long does an obligation hold for,

and based on this there are di�erent conditions to ful�l the

obligation. We take a systematic approach to this issue. A

norm can specify that an obligation is in force for a particular

time point or, more o�en, a norm indicates when an obligation

enters in force. An obligation remains in force until terminated

or removed. Accordingly, in the �rst case we will speak

of punctual obligations and in the second case of persistent
obligations.

For persistent obligations we can ask if to ful�l an obligation

we have to obey to it for all instants in the interval in

which it is in force, maintenance obligations, or whether

doing or achieving the content of the obligation at least

once is enough to ful�l it, achievement obligations. For

achievement obligations another aspect to consider is whether

the obligation could be ful�lled even before the obligation is

actually in force. If this is admi�ed, then we have a preemptive
obligation, otherwise the obligation is non-preemptive.

�e �nal aspect we want to touch upon in this section is the

termination of obligations. Norms can specify the interval in

which an obligation is in force. Previously, we discussed that

what di�erentiates obligations and other constraints is that

obligations can be violated. What are the e�ects of a violation

on the obligation the violation violates? More precisely, does

a violation terminate the violated obligation? Meaning, do

we still have to comply with a violated obligation? If we

do –the obligation persists a�er being violated– we speak of

a perdurant obligation, if it does not, then we have a non-
perdurant obligation.

It is worth noticing that the classi�cation discussed above

is exhaustive. It has been obtained in a systematic and

comprehensive way when one considers the aspect of the

validity of obligations –or prohibitions– (i.e., whether they

persist a�er they enter in force or they are valid only for

a speci�c time unit), and the e�ects of violations on them,

namely: whether a violation can be compensated for, and

whether an obligation persists a�er being violated.

�e semantics for the various types of obligations is based

on the function Force with the following signature:

Force : TP × N 7→ 2
L .

�e function Force associates to each task in a trace a set

of literals, where these literals represent the obligations in

force for that combination of task and trace. �ese are among

the obligations that the process has to ful�l to comply with

a given normative framework; for instance o ∈ t, 3 speci�es

that o is obligatory for the third tasks in trace t .
�e various types of obligations can be de�ned using

combinations of the Force and State functions to specify when

an obligation is in force and what constitutes a violation of the

obligation. For example, maintenance obligations are de�ned

as follows.

De�nition 1 Given a process P and a trace t ∈ TP , an
obligation o is a maintenance obligation in t if and only if

∃n,m ∈ N, n < m such that:

1) o < Force(t ,n − 1),
2) o < Force(t ,m + 1), and
3) ∀k : n ≤ k ≤ m,o ∈ Force(t ,k )

A maintenance obligation o is violated in t if and only if

∃k : n ≤ k ≤ m,o < State(t ,k ).

De�nitions and real examples for all normative concepts

outlined in this section are given in [5], [6].

IV. Modelling Compliance

Intuitively a process is compliant with a set of norms if it

does not violate any norm in the set. Given that, in general,

it is possible to perform a business process in many di�erent

ways, thus we can have two notions of compliance:

De�nition 2 Let N be a normative system.

1) A process P fully complies with N i� every trace t ∈ TP
complies with N .

2) A process P partially complies with N i� there is a trace

t ∈ TP that complies with N .

�e di�erence between these two de�nitions of compliance

is that the �rst case ensures that all possible executions

are compliant, i.e., no execution results in a state with

(uncompensated) obligations, while the second establishes

that it is possible to execute the process without violating the

norms. In both cases the de�nition depends on the notion of

“to comply with”.

De�nition 3 A trace t complies with a normative system

N = {n1,n2, . . . } i� all norms ni in N have not been violated.

In Section III we provided various types of norms. �e

possibility of a norm to be violated is what distinguish



norms from other types of constraints. �en, given that

violations are possible, one has to consider that violations

can be compensated. Is a process where some norms have

violated and compensated for compliant? To account for this

possibility we introduce the distinction between strong and

weak compliance. Strong compliance corresponds to De�nition

3. Weak compliance is de�ned as follows:

De�nition 4 A trace t weakly complies with a normative

system N i� every violated norm has been compensated for.

V. Regorous Architecture

In this section we �rst introduce the architecture of

Regorous Process Designer
3
(from now on simply Regorous),

a business process compliance checker based on the business

process compliance methodology proposed by Governatori

and Sadiq [1], [10].

As we have already discussed to check whether a business

process is compliant with a relevant regulation, we need an

annotated business process model and the formal represent-

ation of the regulation. �e annotations are a�ached to the

tasks of the process, and it can be used to record the data,

resources and other information related to the single tasks in

a process.

For the formal representation of the regulation we use FCL

[17], [18]. FCL is a simple, e�cient, �exible rule based logic.

FCL has been obtained from the combination of defeasible

logic (for the e�cient and natural treatment of exceptions,

which are a common feature in normative reasoning) [19] and

a deontic logic of violations [20]. In FCL a norm is represented

by a rule

a1, . . . ,an ⇒ c

Where a1, . . . ,an are the conditions of applicability of the

norm/rule and c is the normative e�ect of the norm/rule.

FCL distinguishes two normative e�ects: the �rst is that of

introducing a de�nition for a new term. For example the rule

customer (x ), spending(x ) > 1000⇒ premium customer (x )

speci�es that, typically, a premium customer is a customer

who has spent over 1000 dollars. �e second normative e�ect

is that of triggering obligations and other deontic notions.

FCL supports all deontic notions presented in Section III,

in addition it has mechanisms to terminate and remove

obligations (see [18] for full details). For obligations and

permission we use the following notation:

• [P]p: p is permi�ed;

• [OM]p: there is a maintenance obligation for p;
• [OAPP]p: there is an achievement preemptive and per-

durant obligation for p;
• [OAPNP]p: there is an achievement preemptive and non-

perdurant obligation for p;
• [OANPP]p: there is an achievement non preemptive and

perdurant obligation for p;

3
Regorous is available under an evaluation license from h�p://www.

regorous.com.

• [OANPNP]p: there is an achievement non preemptive

and non-perdurant obligation for p.

Compensations are implemented based on the notion of

‘reparation chain’ [20]. A reparation chair is an expression

O1c1 ⊗ O2c ⊗ · · · ⊗ Oncn ,

where each Oi is an obligation, and each ci is the content

of the obligation (modelled by a literal). �e meaning of a

reparation chain is that we have that c1 is obligatory, but if

the obligation of c1 is violated, i.e., we have ¬c1, then the

violation is compensated by c2 (which is then obligatory). But

if even O2c2 is violated, then this violation is compensated by

c3 which, a�er the violation of c2, becomes obligatory, and

so on.

It is worth noticing that FCL allows deontic expressions

(but not reparation chains) to appear in the body of rules,

thus we can have rules like:

restaurant, [P]sell alcohol ⇒ [OM]show license ⊗
[OAPNP]pay �ne.

�e rule above means that if a restaurant has a license to

sell alcohol (i.e, it is permi�ed to sell it, [P]sell alcohol),
then it has a maintenance obligation to expose the license

([OM]show license), if it does not then it has to pay the

�ne ([OAPNP]pay �ne). �e obligation to pay the �ne is

non-pre-emptive (meaning that it cannot be paid before the

violation). FCL is equipped with a binary relations over rules,

called superiority relation, that allows us to handle rules with

con�icting conclusions: for example a rule r se�ing a general

prohibition and a second rule s that derogates the prohibition

permi�ing the conclusions. �is type of situation is common

in legal reasoning and can be modelled by saying that s is

“stronger” than r , in symbols s > r . If both rules apply we

will say that s defeats r . For full a description of FCL and its

features, see [17], [18].

�e reasoning to determine what obligations, prohibitions

and permissions are derivable from a set of facts and a set

or rules is as follows.

An obligation [O]p (where [O], [Ox ] and [Dy], in the de-

scription below, are placeholders for the obligations described

above) is derivable if:

1) [O]p is given as one of the facts, or

2) there is a rule

r : a1, . . . an ⇒ [O1]p1 ⊗ [Om]pm ⊗ [O]p . . .

such that

a) for all 1 ≤ i ≤ n, ai is provable, and
b) for all 1 ≤ j ≤ m, [Oj ]pj and ¬pj are provable, and

c) for all rules

s : b1, . . . ,bk ⇒ [D1]q1 ⊗ [Dl ]ql ⊗ [D]p ′

such that p ′ is the negation of p, either

i) exists 1 ≤ i ≤ k such that bi is not provable, or
ii) exists 1 ≤ j ≤ l such that either [Dj ]qj or ¬qj is

not provable, or



iii) r defeats s .

�e idea is that there must be a rule that �res: so all the

elements in the antecedents are provable (a), and in case the

conclusion is an obligation for a reparation, all the obligations

before it have to be violated. �us, the violated obligation

were in force (thus the obligations were provable) and we

have evidence that it was violated (thus the negation of the

content of each violated obligation is provable) (b). In addition,

we have to ensure that there are no rules for the opposite

that �re (c), and if they do, these rules are weaker than the

rule for the obligation we want to conclude.

For permission, we have the same conditions, but where

we use [P]p instead of [O]p; also, we conclude [P]p if we can

conclude [O]p. For the full presentation of the logic we refer

to [18], [21].

Finally, FCL is agnostic about the nature of the literals

it uses. �ey can represent tasks (activities executed in a

process), or propositions representing state variables and the

happening of events.

Compliance is not just about the tasks to be executed in a

process but also on what the tasks do, the way they change the

data and the state of artefacts related to the process, and the

resources linked to the process. Accordingly, process models

must be enriched with such information. [13] proposes to

enrich process models with semantic annotations. Each task

in a process model can have a�ached to it a set of semantic

annotations. In our approach the semantic annotations are

literals in the language of FCL, representing the e�ects of the

tasks. �e approach can be used to model business process

data compliance [12].

Compliance Checker
Logical State 

Representation

State(t,1)

State(t,2)

State(t,3)

State(t,4)

Rule1
Rule2
Rule3
Rule4
Rule5
Rule6
Rule7
Rule8
Rule9

...

Compliance
 Rule Base

Obligations

Input

...

Annotated Business Process

T2

T5

T3

T1

T4

T7 T6

Legalese Formalisation

Recommendation Sub-system recommendations

wh
at

 if
an

al
ys

is

Status Report

Figure 2. Architecture of Regorous

Figure 2 depicts the architecture of Regorous. Given an

annotated process and the formalisation of the relevant

regulation, we can use the algorithm initially proposed in

[22] and then extended to cover the full FCL language in

[18] to determine whether the annotated process model is

compliant. �e procedure runs as follows:

• Generate an execution trace of the process.

• Traverse the trace:

– for each task in the trace, cumulate the e�ects of the

task using an update semantics (i.e., if an e�ect in

the current task con�icts with previous annotation,

update using the e�ects of the current tasks).

– use the set of cumulated e�ects to determine which

obligations enter into force at the current tasks. �is

is done by a call to an FCL reasoner.

– add the obligations obtained from the previous step to

the set of obligations carried over from the previous

task.

– determine which obligations have been ful�lled, viol-

ated, or are pending; and if there are violated obligation

check whether they have been compensated.

• repeat for all traces.

�us for the n-th element of a trace t we use State(t ,n) as
the set of facts in the computation to determine which rules

�re, and consequently which obligations are in Force(t ,n + 1).
In addition, Force(t ,n) contains the obligations that are in

Force(t ,n) but not terminated at n (an obligation can be

terminated for the following three reasons: we reach its

deadline, the obligation has been ful�lled, the obligation

has been violated and it is not perdurant). To assess which

obligations have been complied with or violated in n we

compare the elements of Force(t ,n) and State(t ,n).
A process is (fully) compliant if and only if all traces are

compliant (all obligations have been ful�lled or if violated

they have been compensated). A process is partially compliant

if there is at least one trace that is compliant.

Notice that the Regorous’s strategy to examine all traces

(with the proviso that all loops are unfolded once) is optimal,

in the sense that [23] proved that the problem of determining

whether a process is weakly compliant is NP-complete and

CoNP-complete for the case of full compliance.

A. Implementation and Evaluation
Regorous Process Designer has been implemented on top

of Eclipse. For the representation of process models, it uses

the Eclipse Activiti BPMN 2.0 plugin, extended with features

to allow users to add semantic annotations to the tasks in the

process model. Regorous is process model agnostic, this means

that while the current implementation is based on BPMN all

Regorous needs is to have a description of the process and

the annotations for each task. A module of Regorous take the

description of the process and generates the execution traces

corresponding to the process. A�er the traces are generated,

it implements the algorithm outlined above, where it uses

the SPINdle rule engine [24] for the evaluation of the FCL

rules. In case a process is not compliant (or if it is only

weakly compliant) Regorous reports the traces, tasks, rules

and obligations involved in the non compliance issues.

Regorous was successfully tested against the 2012 Aus-

tralian Telecommunications Customers Protection Code (C628-

2012), in an industry scale pilot project in collaboration with

an industry partner operating in the sector. See [10], [25] for

the results of the evaluation.



VI. A Privacy Scenario

In this section we recall the scenario and related analysis

presented in [8] to show that LTL cannot be used to model

norms, and used in [9] to demonstrate that current CMFs

based on temporal logic produce an incorrect compliance

outcome.

Suppose that a Privacy Act contains the following norms:
4

Section 1. �e collection of personal information is forbidden,

unless acting on a court order authorising it.

Section 2. �e destruction of illegally collected personal

information before accessing it is a defence against

the illegal collection of the personal information.

Section 3. �e collection of medical information is forbidden,

unless the entity collecting the medical information

is permi�ed to collect personal information.

In addition the Act speci�es what personal information and

medical information are, and they turn out to be disjoint.

Suppose an entity, subject to the Act, collects some personal

information without being permi�ed to do so; at the same

time they collect medical information. �e entity recognises

that they illegally collected personal information (i.e., they

collected the information without being authorised to do

so by a Court Order) and decides to remediate the illegal

collection by destroying the information before accessing it.

Is the entity compliant with the Privacy Act above? Given

that the personal information was destroyed the entity was

excused from the violation of the �rst section (illegal collection

of personal information). However, even if the entity was

excused from the illegal collection, they were never entitled

(i.e., permi�ed) to collect personal information
5
, consequently

they were not permi�ed to collect medical information; thus

the prohibition of collecting medical information was in force.

Accordingly, the collection of medical information violates

the norm forbidding such an activity.

Let us examine the structure of the act:

Section 1 establishes two conditions:

i. Typically the collection of personal information is for-

bidden; and

ii. �e collection of personal information is permi�ed, if

there is a court order authorising the collection of

personal information.

Section 2 can be paraphrased as follows:

iii. �e destruction of personal information collected illegally

before accessing it excuses the illegal collection.

Similarly to Section 2, Section 3 states two conditions:

iv. Typically the collection of medical information is forbid-

den; and

4
�e Privacy Act presented here, though realistic, is a �ctional one.

However, (i) it is based on the novel Australian Privacy Principles (APP),

Privacy Amendment (Enhancing Privacy Protection) Act 2012, and (ii) sections

with the same logical structure as the clauses of this �ctional act are present

in the APP Act.

5
If they were permi�ed to collect personal information, then the collection

would have not been illegal, and they did not have to destroy it.

v. �e collection of medical information is permi�ed

provided that the collection of personal information is

permi�ed.

Based on the above discussion, if we abstract from the

actual content of the norms, the structure of the act can

be represented by the following set of norms (extended form):

E1. A (“collection of medical information”) is forbidden.

E2. A is permi�ed given C (“acting under a court order”);

alternatively: if C , then A is permi�ed.

E3. �e violation of A is compensated by B (“destruction of

collected medical information”).

E4. D (“collection of personal information”) is forbidden.

E5. If A is permi�ed, so is D.

To compensate a violation we have to have a violation the

compensation compensates. Moreover, to have a violation

we have to have an obligation or prohibition, the violation

violates. Accordingly, it makes sense to combine E1 and E3

in a single norm, obtaining thus the following set of norms

(condensed form):

C1. A is forbidden; its violation is compensated by B.
C2. A is permi�ed given C (alternatively: if C , then A is

permi�ed).

C3. D is forbidden.

C4. If A is permi�ed, so is D.

Let us consider what are the situations compliant with the

above set of norms. Clearly, if C does not hold, then we have

that the prohibition of A and prohibition of D are in force.

�erefore, a situation where ¬A, ¬C , and ¬D hold is fully

compliant (irrespective whether B holds or not). If C holds,

then the permission of A derogates the prohibition of A, thus
situations with either A holds or ¬A holds are compliant with

the �rst two norms; in addition, the permission of A allows

us to derogate the prohibition of D. Accordingly, situations
with either D or ¬D comply with the third norm. Let us go

back to scenarios where C does not hold, and let us suppose

that we have A. �is means that the prohibition of A has

been violated; nevertheless the set of norms allows us to

recover from such a violation by B. However, as we just

remarked above to have a violation we have to have either

an obligation or a prohibition that has been violated: in this

case the prohibition of A. Given that the prohibition of A and

the permission of A are mutually incompatible, we must have,

to maintain a consistent situation, that A is not permi�ed.

But if A was not permi�ed D is not permi�ed either; actually,

according to the third norm, D is forbidden. To sum up, a

scenario where ¬C , A, B and ¬D hold is still compliant (even

if to a lesser degree given the compensated violation of the

prohibition of A). In any case, no situation where both ¬C
and D hold is compliant.

�e Act can be modelled in FCL by the following theory:

FCL1 r1 : ⇒ [OM]¬A ⊗ [OANPP]B;
FCL2 r2 : C ⇒ [P]A;
FCL3 r3 : ⇒ [OM]¬D;
FCL4 r4 : [P]A⇒ [P]D;
FCL5 r2 > r1, r4 > r3.



Table I

Evolution of the values of the compliance functions for the privacy scenario

Task/Event Chains Force Violated Compensated
start
T1 [OM]¬A ⊗ [OANPP]B, [OM]¬D [OM]¬A, [OM]D [OM]¬A
T2 [OANPP]B, [OM]D [OM]¬A, [OM]¬D, [OANPP]B [OM]¬A, [OM]¬D
T3 [OANPP]B [OM]¬A, [OM]¬D, [OANPP]B [OM]¬A, [OM]¬D [OM]¬A
end [OM]¬A, [OM]¬D [OM]¬A

FCL1–FCL4 are a direct translation of the norms as presented

in their condensed form. �e two instances of the superiority

relation in FCL5 indicate that the permissive norms C2 and

C4 are exceptions to the norms in C1 and C3, respectively.

Collect

Personal

Information

Collect

Medical

Information

Destroy

Personal

Information

T
1

T
2

T
3

Start End

Figure 3. Simple Information Collection Process for the Privacy Scenario

Consider the process in Figure 3. Clearly, the process

consists of a single trace

t = 〈start,T1,T2,T4, end〉,

and suppose that there is no court order authorising the

collection of personal information. Accordingly, the State
function is instantiated as follows:

6

• State(t , start) = {¬C};
• State(t ,T1) = {¬C,A};
• State(t ,T2) = {¬C,D};
• State(t ,T3) = {¬C,B};
• State(t , end) = {¬C}.

For each state Regorous maintains four sets related to the

obligations and permissions: Chains, Force, Violated and

Compensated.
Chains contains the conclusions (or fragments of them) of

the undefeated rules that �re in the current state, or that

where in Chains in the previous state and have not been

terminated.

Force contains the obligations and prohibitions in force

at the current state. �ese are the conclusions obtained by

using State computed at the previous step as the set of facts

used as input for the FCL rules (see the outline of the FCL

mechanism in the previous section). In addition it contains

the obligations and prohibitions from the previous iteration

of the computation that were not terminated.

Violated cumulates the obligations that have been violated

up to the current state in the process.

Compensated maintains the set of obligations which have

been compensated.

Table I shows how the four sets above are populated for

the process at hand.

6
To improve the readability we use the name of the tasks and events

instead of the ordinal number.

Given that, ¬C holds from start, rule r1 �res, and from

it we can derive the chain [OM]¬A ⊗ [OANPP]B, thus the

obligation (prohibition) [OM]¬A is in force from the �rst

task in the process, namely T1. For the same reason we are

not able to conclude that [P]A holds (rule r2 would require

C to �re), thus we cannot use rule r4, so rule r3 �res and it

is not defeated, thus we conclude [OM]¬D. In T1 we have

¬A, thus we have the violation of the prohibition to collect

personal information. �is means that from the next step the

compensatory obligation [OANPP]B will be in force. In T2,
we have D, which implies that the prohibition of collecting

medical information (i.e., [OM]¬D) has been violated. In T3
we introduce B. �is means that the corresponding obligation

[OANPP]B is ful�lled. In addition this compensates the

violation of the obligation of [OM]¬A. In the last step (end)
we have to check whether there are pending achievement

obligations (which is not the case) and whether all violated

obligations have been compensated for. �e violation of the

prohibition of A has been compensated, but the violation of

the prohibition of D has not. �is means that, as far as A is

concern, the process is weakly compliant, and the process is

not compliant when we consider D. �e result produced by

FCL is fully aligned with the intuitive legal analysis of the

scenario.

VII. Compliance at Design Time, Run Time and Auditing

�e methodology and tool presented in the previous

sections are primarily meant to help in the design of compliant

business processes according the principle of compliance-by-

design. While the tool is implemented in a computer system

the proposed approach does not require the processes to be

implement and executed by a work�ow engine. Obviously,

an enterprise obtain the major bene�t when the tasks in a

process are fully automated and the coordination of the order

of execution of the task is under the control of a process-aware

information system.�en, assuming a faithful implementation

of the processes, all instances of the process are guaranteed

to be compliant removing, potentially, the need of run-time

monitoring and post-execution auditing.

At the other extreme of the spectrum we have the case

where processes are not implemented by work�ow engines.

�e proposed approach is still useful in so far as it can be used

to establish the blue-prints of compliant processes. Clearly, if

the tasks are executed by human operators (and the operators

have �exibility about what operations are execute, and when

to execute them), the tool cannot be used to support run-time



monitoring and auditing, and other well establish methods

have to used.

�e last situation to consider is when there are no well

de�ned process models, but the business activities (i.e.,

processes) are still supported by ICT technology in the form

of recording of business events and message passing, and

writing them in a log. In this scenario, the approach we

proposed approach can be still applied. As we have outlined

in Section IV Regorous simulates all the possible (�nite)

executions of a process, where an execution or trace is the

sequence of tasks to be executed. In this case we can use

a business event as a tasks. Here, instead of annotation the

tasks in a process, we do the same on the business events

and messages to be recored in the log, and extract the data

using the techniques presented in [12]. At run-time, a�er

each business events Regorous can compute what are the

obligations, prohibitions in force a�er the business event, and

evaluate whether they have been ful�lled or violated and

report the resulting state. For auditing, Regorous can examine

the log, and for each instance, replay it to determine, using

the same algorithms for compliance, whether the instance

was properly executed, and if it was compliant.

VIII. Conclusions

We reported on the development of a tool, Regorous Process

Designer, for checking the compliance of business processes

with relevant regulations, based on the compliance-by-design

methodology proposed by Governatori and Sadiq [1]. Regor-

ous is based on FCL [18], and we have shown that the combin-

ation of FCL and the compliance-by-design methodology does

not su�er from the problem of not being able to correctly asses

the compliance of a business process a�ecting compliance

frameworks (e.g., MoBuCom [26], COMPAS [27]) based on

temporal logics [9]. Furthermore, Regorous was successfully

tested for real industry scale compliance problems.

Acknowledgment

NICTA is funded by the Australian Government as represen-

ted by the Department of Communications and the Australian

Research Council through the ICT Centre of Excellence

program.

References

[1] G. Governatori and S. Sadiq, “The journey to business process

compliance”, in Handbook of Research on BPM, IGI Global,

2009, ch. 20, pp. 426–454.

[2] G. Governatori, Z. Milosevic and S. Sadiq, “Compliance check-

ing between business processes and business contracts”, in

Proc. EDOC 2006, IEEE Computing Society, 2006, pp. 221–232.

[3] L. T. Ly, F. M. Maggi, M. Montali, S. Riderle-Ma and W. M. P.

van der Aalst, “Compliance monitoring in business processes:

Functionalities, application, and tool-support”, Information
Systems, 2015.

[4] J. Becker, P. Delfmann, M. Eggert and S. Schwi�ay, “Gener-

alizability and applicability of model-based business process

compliance-checking approaches – a state-of-the-art analysis

and research roadmap”, BuR – Business Research Journal, vol.
5, no. 2, pp. 221–247, 2012.

[5] G. Governatori, “Business process compliance: An abstract

normative framework”, IT – Information Technology, vol. 55,
no. 6, pp. 231–238, 2013.

[6] M. Hashmi, G. Governatori and M. T. Wynn, “Normative

requirements for regulatory compliance: An abstract formal

framework”, Information Systems Frontiers, 2015.
[7] , “Modeling obligations with event-calculus”, in Proc.

RuleML 2014, ser. LNCS, vol. 8620, Springer, 2014, pp. 296–310.
[8] G. Governatori, “Thou shalt is not you will”, in Proc. ICAIL

2015, ACM, 2015, pp. 63–68.

[9] G. Governatori and M. Hashmi, “No time for compliance”, in

Proc. EDOC 2015, IEEE, 2015.
[10] S. Sadiq and G. Governatori, “Managing regulatory compliance

in business processes”, in Handbook of Business Process
Management, vol. 2, Springer, 2010, ch. 8, pp. 157–173.

[11] M. Dumas, M. La Rosa, J. Mendling and H. A. Reijers,

Fundamentals of Business Process Management. Springer, 2013.
[12] M. Hashmi, G. Governatori and M. T. Wynn, “Business process

data compliance”, in Proc. RuleML 2012, ser. LNCS, vol. 7438,
Springer, 2012, pp. 32–46.

[13] S. Sadiq, G. Governatori and K. Naimiri, “Modelling of control

objectives for business process compliance”, in Proc. BPM 2007,
ser. LNCS, Springer, 2007, pp. 149–164.

[14] T. F. Gordon, G. Governatori and A. Rotolo, “Rules and norms:

Requirements for rule interchange languages in the legal

domain”, in Proc. RuleML 2009, ser. LNCS, Springer, 2009,
pp. 282–296.

[15] G. Sartor, Legal Reasoning: A Cognitive Approach to the Law.
Springer, 2005.

[16] G. Governatori and Z. Milosevic, “Dealing with contract

violations: Formalism and domain speci�c language”, in Proc.
EDOC 2005, IEEE Computer Society, 2005, pp. 46–57.

[17] G. Governatori, “Representing business contracts in RuleML”,

International Journal of Cooperative Information Systems, vol.
14, no. 2-3, pp. 181–216, 2005.

[18] G. Governatori and A. Rotolo, “A conceptually rich model

of business process compliance”, in Proc. APCCM 2010, ser.
CRPIT, vol. 110, ACS, 2010, pp. 3–12.

[19] G. Antoniou, D. Billington, G. Governatori and M. J. Maher,

“Representation results for defeasible logic”, ACM Transactions
on Computational Logic, vol. 2, no. 2, pp. 255–287, 2001.

[20] G. Governatori and A. Rotolo, “Logic of violations: A Gentzen

system for reasoning with contrary-to-duty obligations”,

Australasian Journal of Logic, vol. 4, pp. 193–215, 2006.
[21] G. Governatori, F. Olivieri, A. Rotolo and S. Scannapieco,

“Computing strong and weak permissions in defeasible logic”,

Journal of Philosophical Logic, vol. 42, no. 6, pp. 799–829, 2013.
[22] G. Governatori and A. Rotolo, “An algorithm for business

process compliance”, in Proc. JURIX 2008, ser. Frontieres in
Arti�cial Intelligence and Applications, vol. 189, IOS Press,

2008, pp. 186–191.

[23] S. Colombo Tosa�o, G. Governatori and P. Kelsen, “Business

process regulatory compliance is hard”, IEEE Transactions on
Services Computing, 2014, online �rst.

[24] H.-P. Lam and G. Governatori, “The making of SPINdle”, in

Proc. RuleML 2009, ser. LNCS, Springer, 2009, pp. 315–322.
[25] G. Governatori and S. Shek, “Regorous: A business process

compliance checker”, in Proc. ICAIL 2013, ACM, 2013, pp. 245–

246.

[26] F. Maggi, M. Montali, M. Westergaard and W. van der Aalst,

“Monitoring business constraints with linear temporal logic:

an approach based on colored automata”, in Proc. BPM 2011,
ser. LNCS, vol. 6896, Springer, 2011, pp. 132–147.

[27] A. Elgammal, O. Türetken and W.-J. van den Heuvel, “Using

pa�erns for the analysis and resolution of compliance

violations”, International Journal of Cooperative Information
Systems, vol. 21, no. 1, pp. 31–54, 2012.


