
Heuristics for Licenses Composition

Guido GOVERNATORI a,1, Ho-Pun LAM a, Antonino ROTOLO b,
Serena VILLATA c and Fabien GANDON c

a NICTA Queensland Research Laboratory
b University of Bologna

c INRIA Sophia Antipolis

Abstract. The Web of Data is assisting to a growth of interest with respect to the
open challenge of representing and reasoning in an automated way over licenses and
copyright. In this paper, we deal with the problem of checking the composing to-
gether a set of licensing terms associated to a single query result on the Web of Data
to create a so called composite license. More precisely, we analyze two composition
heuristics, AND-composition and OR-composition, showing how they can be used to
combine the deontic components specified by the licenses, i.e., permissions, obliga-
tions, and prohibitions, and which are the most suitable combinations depending on
the starting licenses. Such heuristics are evaluated using the SPINdle logic reasoner.

Introduction

In the Web of Data [11], the problem of handling the licensing terms associated to the
data in an automated way is becoming more and more important. Several challenges arise
to represent licensing information in a machine-readable format (i.e., from the definition
of lightweight vocabularies like ORDL2 and Creative Commons3 up to the definition of
specific ontology design patterns), and to reason over such information to achieve more
complex goals like checking the compatibility of a set of licenses and compose them in
a compliant way. In particular, the problem of combining the set of terms belonging to
heterogeneous licenses or contracts has been studied in different contexts [4,3,18,17].
However, a deeper analysis of the licenses composition heuristics w.r.t. their deontic
component (i.e., permissions, obligations, and prohibitions) is needed.

In this paper, we address the research question: how to reason over the composition
of a set of licenses such that their deontic component guides the choice of the heuristic?
To answer this question we rely on the defeasible deontic logic presented in [17,10], and
we include two composition heuristics, namely AND-composition and OR-composition,
in the SPINdle reasoning engine [13] to evaluate their computational feasibility

Figure 1 shows the overall workflow of the licenses composition framework. Our
application scenario consists in a data consumer querying a SPARQL endpoint to obtain
some data (step 1, Fig. 1). We retrieve the (possibly numerous) license(s) associated to the
triples of query result (steps 1-2, Fig. 1), and if more than one license is associated to such

1Corresponding Author: guido.governatori@nicta.com.au
2http://w3.org/ns/odrl/2/
3http://creativecommons.org/ns

CLIENT QUERY

SELECT...
WHERE{...}

CLIENT QUERY
+ licenses

COMPOSITE
LICENSE Lc

SPARQL QUERY RESULT
XML + <link URI-Lc>

AND-composition
heuristics

OR-composition
heuristics

LICENSES
RETRIEVAL

QUERY RESULT
+ retrieved licenses

from RDF
to SPINdle

from SPINdle
to RDF

1 2

3
4

5

6

7

Figure 1. Workflow of our licenses composition framework.

triples, we compose them into a unique composite license. We first translate the retrieved
licenses from RDF to the SPINdle syntax (step 4, Fig. 1) and then the whole theory,
containing all the licenses to be composed, is loaded in SPINDdle. SPINdle manages two
kinds of composition heuristics (step 5, Fig. 1): the AND-composition (i.e., the composite
license entails a deontic effect if all the licenses composing it entail such deontic effect),
and the OR-composition (i.e., the composite license entails a deontic effect if there is at
least one licenses that entails such effect, and no license prevents it). These two heuristics
can be combined together to produce the composite licenses (step 6, Fig. 1), allowing
in such a way a different treatment for each deontic component. Finally, we return to
the consumer the query result together with the URI of the machine-readable composite
license (step 7, Fig. 1).

The limitations of our model are: (i) we do not consider other composition heuristics
like the Constraining Value and quantitative heuristics [3], and (ii) our composition
framework does not consider the additional terms of the licenses. Finally, note that our
application scenario does not deal with dual-licensing (alternative licenses for the same
data), but we deal with the composition of different licenses associated to different triples
which are returned together as result of a SPARQL query.

The remainder of the paper is as follows: Section 1 discusses the related literature,
and in Section 2 we formally define the two composition heuristics and evaluate them
using the SPINdle reasoner.

1. Related Work

The closest set of related work is in the area of contracts compatibility and composition
for services composition. Comerio [3] analyses which kind of qualitative and quantitative
heuristics can be used for contacts composition in the context of services composition.
Qualitative heuristics include AND- and OR-composition heuristics plus the Constraining
Value one where the most constraining value among the ones offered by the contracts of
the services to be composed is included in the composite service. Quantitative heuristics,
instead, include MIN, MAX, AVG and SUM (the composite contract offers the minimum (resp.
maximum, mean, sum) among the values offered by the contracts of the single services
involved in the composition. In this paper, we do not consider quantitative heuristics, and
we propose a fine grained analysis of the ADN- and OR-composition heuristics and how

to combine them with respect to the deontic component of the single licenses to compose.
Gangadharan et al. [4] address the issue of service license composition and compatibility
analysis, specifying a matchmaking algorithm which verifies whether two service licenses
are compatible. In case of a positive answer, the services can be composed and the
framework determines the license of the composite service. Truong et al. [18] address a
similar problem concerning data contracts: in contracts composition, first the comparable
contractual terms from the different contracts are retrieved, and second an evaluation of
the new contractual terms for the data mash-up is addressed. We concentrated on the
evaluation of the composition heuristics and how they can be composed to better suit the
data publisher’s needs. Other related work concerns reasoning about licenses [16,5] or
licensing issues in the Semantic Web scenario [15,12]. However, they do not address the
issue of licenses heuristics composition which is the goal of this paper.

2. Composition heuristics for data licensing

We begin by introducing the defeasible deontic logic we rely on to automatically generate
the composite licenses ensuring its compliance w.r.t. the single licenses composing it.

We propose an extension of Defeasible Logic, extending earlier works [9,8], to handle
license composition. Previous versions of this logic were proposed in [17,10]. The current
version, as will see, is much more compact than the one in [17], and proposes a new and
more intuitive reading of AND-composition and OR-composition than the one in [10].
Both improvements allow us to easily generate composite licenses. Moreover, in this paper
we present an evaluation of such composition heuristics which is absent in [17], and we
implemented the licenses composer into the SPINdle reasoner, differently from [10] where
the evaluation resulted from a transformation only. Dealing with license composition
requires reasoning about two components:

Factual and ontology component: the first component is meant to describe the facts
with respect to which Web of Data licenses are applied as well as the ontology of
concepts involved by licenses (thus modeling, e.g., concept inclusion);

Deontic component: the second component aims at capturing the deontic aspects of
Web of Data licenses, thus offering mechanisms for reasoning about obligations,
prohibitions, and permissions in force in each license, and in their composition.

We focus on the deontic component, even though, for the sake of completeness, we
illustrate the proposed method by also handling, in standard Defeasible Logic, the factual
and ontology component, as done in [2,17]. Notice that we assume that all licenses share
a same ontology, or that the ontologies are aligned.

The formal language of the logic is rule-based. Literals can be plain, such as p,q,r . . . ,
or modal, such Op (obligatory), Pp (permitted), and Fp (forbidden/prohibited). Ontology
rules work as regular Defeasible Logic rules for deriving plain literals, while the logic of
deontic rules provide a constructive account of the basic deontic modalities (obligation,
prohibition, and permission). However, while we assume that all licenses share a same
ontology, the purpose of the formalism is mainly to establish the conditions to derive dif-
ferent deontic conclusions from different licenses, and check whether they are compatible
so that they can be attributed to a composite license. Hence, we need to keep track of how
these deontic conclusions are obtained. To this purpose, deontic rules (and, as we will see,
their conclusions) are parametrized by labels referring to licenses.

An ontology rule such as a1, . . . ,an⇒ b supports the conclusion of b, given a1, . . . ,an,
and so it states that, from the viewpoint of any license any instance enjoying a1, . . . ,an is
also an instance of b. On the contrary, rules as a,Ob⇒l2

O p state that, if a is the case and b
is obligatory, then Op holds in the perspective of license l2, i.e., p is obligatory for l2.

The proof theory we propose aims at offering an efficient method for reasoning about
the deontic component of each license and, given that method, for combining different
licenses, checking their compatibility, and establishing what deontic conclusions can be
drawn from the composite license. In other words, if lc = l1�·· ·� ln is the composite
license obtained from l1, . . . , ln, the conclusions derived in the logic for l1, . . . , ln are also
used to establish those that hold in lc.

Formal language and basic concepts The basic language is defined as follows. Let
Lic = {l1, l2, . . . , ln} be a finite set of licenses. Given a set PROP of propositional atoms,
the set of literals Lit is the set of such atoms and their negation; as a convention, if q
is a literal, ∼q denotes the complementary literal (if q is a positive literal p then ∼q is
¬p; and if q is ¬p, then ∼q is p). Let us denote with MOD = {O,P,F} the set of basic
deontic modalities. The set ModLit of modal literals is defined as follows: i) if X ∈MOD
and l ∈ Lit, then Xl and ¬Xl are modal literals, ii) nothing else is a modal literal.

Every rule is of the type r : A(r) ↪→x
Y C(r), where: r is a unique identifier for the rule;

A(r) = {a1, . . . ,an}, the antecedent is a set literal if r is an ontology rule, and a set of
modal literals and literals if r is a deontic rule; C(r) the consequent is a literal; if r is a
deontic rule Y ∈MOD represents the type of conclusion obtained (We will see why we
do not need rules for prohibitions and permissions) and x ∈ Lic indicates to which license
the rule refers to; Y and x are not used for ontology rules.

The intuition behind the different arrows is the following. Strict rules have the form
a1, . . . ,an →x

Y b. Defeasible rules have the form a1, . . . ,an ⇒x
Y b. A rule of the form

a1, . . . ,an x
Y b is a defeater. Analogously, for ontology rules, where arrows do not have

superscripts and subscripts. The three types of rules establish the strength of the relation-
ship. Strict rules provide the strongest connection between a set of premises and their
conclusion: whenever the premises are deemed as indisputable so is the conclusion. Defea-
sible rules allow to derive the conclusion unless there is evidence for its contrary. Finally,
defeaters suggest that there is a connection between its premises and the conclusion not
strong enough to warrant the conclusion on its own, but such that it can be used to defeat
rules for the opposite conclusion.

A multi-license theory is the knowledge base which is used to reason about the
applicability of license rules under consideration.

Definition 1 A multi-license theory is a structure D = (F,L,Rc,{ROl}l∈Lic,�), where
F ⊆ Lit∪ModLit is a finite set of facts; L ⊆ Lic is a finite set of licenses; Rc is a finite
set of ontology rules; {ROl}l∈Lic is finite family of sets of obligation rules; � is an

acyclic relation (called superiority relation) defined over (Rc×Rc)∪ (ROl ×ROl′
), where

ROl
,ROl′ ∈ {ROl}l∈Lic.

R[b] and RX [b] with X ∈ {c,Ol |l ∈ Lic} denote the set of all rules whose consequent is
b and of all rules (of type X). Given a set of rules R the sets Rs, Rsd, and Rdft denote,
respectively, the subsets of R of strict rules, defeasible rules, and defeaters.

Proof theory A proof P of length n is a finite sequence P(1), . . . ,P(n) of tagged literals of
the type +∆X q,−∆X q, +∂ X q and−∂ X q, where X ∈ {c,Y l |l ∈ Lic,Y ∈MOD}. The proof
conditions below define the logical meaning of such tagged literals. As a conventional
notation, P(1...i) denotes the initial part of the sequence P of length i. Given a multi-
license theory D, +∆X q means that literal q is provable in D with the mode X using only
facts and strict rules, −∆X q that it has been proved in D that q is not definitely provable in
D with the mode X , +∂ X q that q is defeasibly provable in D with the mode X , and −∂ X q
that it has been proved in D that q is not defeasibly provable in D with the mode X4.

Given # ∈ {∆,∂}, P = P(1), . . . ,P(n) is a proof for p in D for the license l iff
P(n) = +#l p when p ∈ Lit, P(n) = +#X l

q when p = Xq ∈ModLit, and P(n) = −#Y l
q

when p = ¬Y q ∈ModLit.
The proof conditions aim at determining what conclusions can be obtained within

composite licenses by using the source licenses.
We concentrate here on deontic effects of licenses, thus working on the obligations,

prohibitions, permissions entailed by the composition of a given set of licenses (instead of
the composition of the clauses). In [17,10], OR- and AND-compositions were basically
characterized as follows:

• OR-composition: lc entails a deontic effect if there is at least one license that entails
such effect (and no license prevents it).

• AND-composition: lc entails a deontic effect if all licenses entail it.

In this paper, we adopt another approach and associate the different heuristics to the
derivation of different deontic effects. In particular, OR-composition allows to establish
what obligations hold in the composite license: something is obligatory if there is at least
one license supporting it. For permissions, instead, AND-composition is the case, as to
prove that something is permitted in the composite license we have either to prove that
this is the case in all licenses or to exclude that the opposite is obligatory in some license.

Some notational conventions and concepts that we will use throughout the remainder
of this section: i) let lc = l1�·· ·� ln be any composite license that can be obtained from
the set of licenses Lc = {l1, . . . , ln} ⊆ L; ii) let X ,Y ∈MOD.

As usual with Defeasible Logic, we have proof conditions for the monotonic part of
the theory (proofs for the tagged literals ±∆Y p) and for the non-monotonic part (proofs
for the tagged literals ±∂Y p). To check licenses’ compatibility and compose them means
to apply the proof conditions of the logic to a multi-license where the set of licenses is
L = Lc. Since the proof theory for the ontology component (±∆c p and ±∂ c p) is the one
for standard Defeasible Logic we will omit it and refer the reader to [1]. For # ∈ {∆,∂}
and Y ∈ {O,P,F}, notice that conditions governing conclusions for the composite license
lc and for each license li interplay recursively: indeed, we may use a conclusion for lc to
fire a rule in li.

OR-composition and Obligations Let us first define the condition for monotonic deriva-
tions of the obligations in each license li and the condition for the monotonic derivations
of the obligations in the composite license lc: this second case is a first illustration of the
OR-composition heuristics. Assume x ∈ {c, i}:5

4As we will see, we shall adopt a reading of permissions according to which they can only be defeasible.
Hence, we will not define the cases ±∆Y l

q where Y = P.
5We omit the other proof conditions for the deontic effects in each license, defeasible conditions for prohi-

bitions, and all the negative proof conditions, i.e., for −∆Oli , −∆Olc , −∆Fli , −∆Flc , −∂ Oli , −∂ Olc , −∂ Pli , and

+∆Oli : If P(n+1) = +∆Oli q then,
(1) Oq ∈ F or
(2) ∃r ∈ ROli

s [q] :
∀a,Xb,¬Y d ∈ A(r):
+∆ca, +∆X lx b, −∆Y lx d ∈ P(1..n)

+∆Olc : If P(n+1) = +∆Olc q then,
(1) Oq ∈ F or
(2) ∃li ∈ Lic, ∃r ∈ ROli

s [q] :
∀a,Xb,¬Y d ∈ A(r):
+∆ca, +∆X lc b, −∆Y lc d ∈ P(1..n)

Definite proof conditions for prohibitions can be simply obtained:

+∆
Flc : If P(n+1) = +∆

Flc q, then +∆
Olc∼q ∈ P(1..n).

A second illustration of the OR-composition is offered in the defeasible derivations
of the obligations in lc:

+∂ Olc : If P(n+1) = +∂ Olc q then
(1)+∆Olc q ∈ P(1..n) or
(2) (2.1) −∆Olc∼q ∈ P(1..n) and

(2.2) ∃li ∈ Lic such that
(2.2.2) ∃r ∈ ROli

sd [q] : ∀a,Xb,¬Y d ∈ A(r): +∂ ca,+∂ X li b, −∂Y lc d ∈ P(1..n) and
(2.2.3) ∀l j ∈ Lic, ∀s ∈ ROl j

[∼q], either
(2.2.3.1) ∃a ∈ A(s) or Xb ∈ A(s) or ¬Y ∈ A(s):

−∂ ca ∈ P(1..n), or −∂ X lc b ∈ P(1..n), or +∂Y lc d ∈ P(1..n); or
(2.2.3.2) ∃lk ∈ Lic, ∃t ∈ ROlk [q]: ∀a,Xb,¬Y d ∈ A(t),

+∂ ca,+∂ lc b,−∂ lc d ∈ P(1..n), and t � s.

As usual in standard Defeasible Logic, to show that a literal q is defeasibly provable
we have two choices: (1) we show that q is already definitely provable; or (2) we need to
argue using the defeasible part of a multi-license theory D. For this second case, some
(sub)conditions must be satisfied. First, we need to consider possible reasoning chains
in support of ∼q with the modes lc and X lc

, and show that ∼q is not definitely provable
with that mode (2.1 below). Second, we require that there must be a strict or defeasible
rule with mode at hand for q which can apply (2.2 below). Third, we must consider the
set of all rules which are not known to be inapplicable and which permit to get ∼q with
the mode under consideration (2.3 below). Essentially, each rule s of this kind attacks the
conclusion q. To prove q, s must be counterattacked by a rule t for q with the following
properties: i) t must be applicable, and ii) t must prevail over s. Thus each attack on the
conclusion q must be counterattacked by a stronger rule. In other words, r and the rules t
form a team (for q) that defeats the rules s.

AND-composition and Permissions The concept of permission is much more elusive
(for a discussion, see, e.g., [14]). Here, we minimize complexities by adopting perhaps
the two simplest options among those discussed in [7]. Such options model permissions
either as obtained

1. when it is possible to show that the opposite obligations are not provable; or
2. from permissive norms with defeaters for obligations; a defeater like a1, . . . ,an l

O q
states that some q is permitted (Pq) in the license l, since it is meant to block deontic
defeasible rules for ∼q, i.e., rules supporting O∼q.

The first type of permissions corresponds to the so-called weak permissions, according to
which some q is permitted (Pq) because it can be obtained from the fact that ¬q is not

−∂ Plc . The negative conditions can be obtained from positive conditions applying the so-called Principle of
Strong Negation [7].

provable as mandatory [19]. The second type of permissions is just one way for modeling
explicit permissive clauses for proving Pq (strong permissions of q): for an extensive
treatment of defeasible permissions, see [6]. This reading suggests that permissions are
essentially defeasible.

Permission, version I (Weak Permission)

+∂ Plc : If P(n+1) = +∂ Plc q then (1) −∆Olc∼q ∈ P(1..n).

The first type of permission might be useful for combination for ‘public domain’ type
of license, meaning, that unless explicitly obliged or forbidden data can be used freely.

Permission, version II (Strong Permission)

+∂ Plc : If P(n+1) = +∂ Plc q then
(1) (1.1) −∆Olc∼q ∈ P(1..n) and

(1.2) ∀li ∈ Lic,
(1.2.1) ∃r ∈ ROli

dft [q] : ∀a,Xb,¬Y d ∈ A(r): +∂ ca,+∂ X lc b, −∂Y lc d ∈ P(1..n) and
(1.2.3) ∀l j ∈ Lic, ∀s ∈ ROl j

[∼q], either
(1.2.3.1) ∃a ∈ A(s) or Xb ∈ A(s) or ¬Y ∈ A(s):

−∂ ca ∈ P(1..n), or −∂ X lc b ∈ P(1..n), or +∂Y lc d ∈ P(1..n); or
(1.2.3.2) ∀lk ∈ Lic, ∃t ∈ ROlk

dft [q]: ∀a,Xb,¬Y d ∈ A(t),
+∂ ca,+∂ lc b,−∂ lc d ∈ P(1..n), and t � s.

The logic presented here is a variant of the one developed in [9,8]. Accordingly, results of
soundness and linear computational complexity can be directly imported here [17,10].

The following example illustrate some aspects of the proof theory, and how the
heuristics are used.

Example 2 Consider two datasets published on the LOD cloud6 associated to licenses
l1 and l2, respectively. License l1 permits Derivative and obliges for Share-Alike, while
license l2 prohibits Derivative, permits Reproduction, and obliges for Notice.

ROl1 = {r1 :⇒l1
O Share-Alike, r2 : l1

O Derivative}
ROl2 = {r3 :⇒l2

O ∼Derivative, r4 :⇒l2
O Notice, r5 : l2

O Reproduction}
The data publisher has to decide which heuristics better suits her own needs such that
the composite license protects as desired the reuse of the released data. First, she needs
to include the obligations present in each single license (Share-Alike, Notice) to be
compliant with their normative semantics. Thus OR-composition is used to compose
obligations. Concerning permissions (Derivative, Reproduction), she has to check that
every single license includes the specific permission, thus adopting AND-composition.
Given that license l2 obliges for∼Derivative (i.e., prohibits Derivative), we cannot include
such permission in the composite license. Hence, +∂ Olc Share-Alike, +∂ Olc Notice, and
+∂ Plc Reproduction.

Heuristics’ implementation and evaluation We show now how the heuristics we propose
can be used to check the compatibility and combine four real world licenses, widely
adopted in the Linked Open Data scenario, using the SPINdle reasoner. The licenses we
consider are the Creative Commons Public Domain Mark 1.07, the OS Open Data li-

6http://lod-cloud.net/
7http://creativecommons.org/publicdomain/mark/1.0/

cense8, the Creative Commons Attribution-NoDerivs license9, and the Creative Commons
Attribution-NonCommercial-ShareAlike10. The deontic component of such licenses is:

• CC PDM
∗ Permissions: Reproduction, Distribution, Derivative Works.

• OS OpenData
∗ Permissions: Reproduction, Distribution, Derivative Works.
∗ Obligations: Notice, Attribution.

• CC-BY-ND
∗ Permissions: Reproduction, Distribution.
∗ Obligations: Notice, Attribution, Share Alike.

• CC-BY-NC-SA
∗ Permissions: Reproduction, Distribution.
∗ Obligations: Notice, Attribution.
∗ Prohibitions: Commercial.

Notice that licenses CC PDM, OS OpenData and CC-BY-ND allow to make com-
mercial use of the work, i.e., the permission is not explicitly stated but it is ensured by
the absence of the obligation for Non Commercial, and that license CC-BY-ND does not
permit Derivative Works even if such prohibition is not mentioned.

As mentioned before, we have to verify the compatibility of different licensing terms
by composing them into a unique composed theory. The implementation is based on the
two transformations proposed in [10] for AND- and OR-compositions.

tor(r) =

r : A(r) ↪→ p r ∈ Rc

r : A(r)→Oc p r ∈ ROli
s , li ∈ Lic

r : A(r)⇒Oc p r ∈ ROli
d , li ∈ Lic

r : A(r)⇒−Oc ∼p r ∈ ROli
d f t , li ∈ Lic

For the OR-heuristic we can use the tor transformation as it is. For weak permission
SPINdle generates the conclusion +∂ Pc

q as soon as a conclusion −∂ Oli∼q is generated
(alternatively we could add the following set of rules {¬Oli∼q⇒−Oc q | li ∈ Lic,q ∈
Lit} but this transformation could lead to many additional rules, with a degrade in the
performance). For AND-composition, we consider the following transformations:

tando(r) = {ri j : A(r) O j C(r)|r ∈ ROli}∪ {r : A(r)⇒−Oi ∼C(r)|r ∈ ROli
d f t}∪

{r|r ∈ ROli
sd }∪{oq : Ol1q, . . . ,Olnq⇒Oc q | li ∈ Lic,∃r ∈ ROli ,C(r) = q}

tandsp(r) = {pq : P∗q,Pl1q, . . . ,Plnq⇒Pc q, f i
q : ¬Oliq⇒Pli q

pi∗
q : −Oli∼q⇒P∗ q, pq : −Oli∼q⇒Pli q | li ∈ Lic,∃r ∈ ROli ,C(r) = q}

tandwp(r) = {pq : ¬Ol1∼q, . . . ,¬Oln∼q⇒Pc q | li ∈ Lic,q ∈ Lit}

The transformations tor, tando, tandsp and and tandwp are used to map rules in different
licenses to the composed theory. The combination of tando and tandsp gives us the

8http://www.ordnancesurvey.co.uk/docs/licences/os-opendata-licence.pdf
9http://creativecommons.org/licenses/by-nd/3.0/
10http://creativecommons.org/licenses/by-nc-sa/3.0/

transformation given in [10] to handle the AND-composition. However, we can use tando
and tandwp to compute the AND-composition with weak permission instead of strong
permission. In addition it is possible to use the tor and tandsp (or tandwp) to model the
hybrid composition P-AND/OR-O discussed in Example 2. In fact, for the OR-heuristic,
to prove +∂Oc p we only need to prove that Oc p is provable by a license; while in the
AND-heuristic we have to show that the literal is provable in all licenses. However, the
case for permission is a bit different as, in addition to the condition above, it also requires
least one license permits p. To this end, we have implemented a theory composer to apply
the transformations above to different licenses and compose them into a single defeasible
theory, before passing it to SPINdle for reasoning.

Even though one may argue that modifying the inference engine or devise a new
reasoning algorithm to solve our problem can achieve a better performance. However, our
approach can give us, at least, three advantages: (1) the implementation of the licenses
composer is a lot simpler when comparing with modifying the reasoning engine or imple-
menting a new inference algorithm; (2) instead of computing the conclusions for permis-
sion (AND-composition) and obligation (OR-composition) with two separate inferences
(as described in [10]), the proposed approach enable us to compute all conclusions with
one single inference, which is simpler and can reduce the time required for initializing the
reasoning engine; (3) we can utilize the features provided by SPINdle to capture different
intuitions, i.e., ambiguity propagation, well-founded semantics, or their combinations, in
the future without additional work.

Heuristics Theory compose time (ms) Reasoning time (ms) Total time (ms)

NO 6.6 47.8 54.4
OR-composition 11.6 59.6 71.2
P-AND/OR-O-composition 17.3 92.4 109.7
AND-composition 25 210.8 235.8
Both AND- and OR-composition 29 226.2 255.2

Table 1. Reasoning time used for different heuristics

Table 1 shows the composition and reasoning time used for composing the four
licenses mentioned in the previous section. As expected, there is not much different in
the time required to generate the composed theory (and reasoning) with or without the
OR-composition, and there is a minimal overhead with the P-AND/OR-O-composition.
However, the cases with AND-composition (the latter two cases) is a bit worse (but still in
acceptable range) as plethora of propositions are added to the composed theory to ensure
consistency among different licenses.

3. Concluding remarks

The development of new models and tools for the advanced management of legal in-
formation and knowledge in the Web of Data raises open challenges. In this paper, we
have formally defined and evaluated two heuristics for combining the licensing terms
of a set of licenses in a compliant way, using our defeasible deontic logic. The OR- and
AND-composition heuristics have been coded into the SPINdle defeasible logic reasoner,

and the system’s evaluation show the applicability of the proposed formal approach in
the Web of Data scenario. Several future directions will be considered. First, we will
enlarge the set of composition heuristics taking into account also qualitative ones and the
Constraining-value heuristic. Second, we are planning the development of a standalone
licensing module able to compose a set of licenses in an automated way, and to generate
the machine-readable composite license. Finally, we will investigate the adoption of
existing trans-border licensing schemes to address the issue of national legal terms.

References

[1] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representation Results for Defeasible
Logic. ACM Transactions on Computational Logic, 2(2):255–286, 2001.

[2] G. Boella, G. Governatori, A. Rotolo, and L. van der Torre. A Logical Understanding of Legal Interpreta-
tion. In Proceedings of KR’10. AAAI Press, 2010.

[3] M. Comerio. Web Service Contracts: Specification, Selection and Composition. PhD Thesis, University
of Milano-Bicocca, Milan, Italy, February 2009.

[4] G. R. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella. Service License Composition and Compati-
bility Analysis. In Proc. ICSOC’07, pp 257–269. Springer, 2007.

[5] T. F. Gordon. Analyzing open source license compatibility issues with Carneades. In Proc. ICAIL’11, pp
51–55. ACM, 2011.

[6] G. Governatori, F. Olivieri, A. Rotolo, and S. Scannapieco. Computing Strong and Weak Permissions in
Defeasible Logic. Journal of Philosophical Logic, forthcoming.

[7] G. Governatori, V. Padmanabhan, A. Rotolo, and A. Sattar. A defeasible logic for modelling policy-based
intentions and motivational attitudes. Logic Journal of IGPL, 17(3):227–265, 2009.

[8] G. Governatori and A. Rotolo. A Computational Framework for Institutional Agency. Artificial Intelli-
gence and Law, 16(1):25–52, 2008.

[9] G. Governatori and A. Rotolo. BIO Logical Agents: Norms, Beliefs, Intentions in Defeasible Logic.
Journal of Autonomous Agents and Multi Agent Systems, pages 36–69, 2008.

[10] G. Governatori, A. Rotolo, S. Villata, and F. Gandon. One License to Compose Them All: A Deontic
Logic Approach to Data Licensing on the Web of Data. In Proc ISWC’13. Springer, 2013.

[11] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on
the Semantic Web: Theory and Technology. Morgan & Claypool, 2011.

[12] M. Krötzsch and S. Speiser. ShareAlike Your Data: Self-referential Usage Policies for the Semantic Web.
In Proc ISWC’11, pp. 354–369. Springer, 2011.

[13] H.-P. Lam and G. Governatori. The Making of SPINdle. In A. Paschke, G. Governatori, and J. Hall,
editors, Proc. RuleML’09, pp. 315–322. Springer-Verlag, 2009.

[14] D. Makinson and L. van der Torre. Permission from an Input/Output Perspective. Journal of Philosophical
Logic, 32(4):391–416, 2003.

[15] N. Nadah, M. D. de Rosnay, and B. Bachimont. Licensing Digital Content with a Generic Ontology:
Escaping From the Jungle of Rights Expression Languages. In Proc. ICAIL’07, pp. 65–69. ACM, 2007.

[16] R. Pucella and V. Weissman. A Logic for Reasoning about Digital Rights. In Proc. CSFW’02, pp. 282–.
IEEE, 2002.

[17] A. Rotolo, S. Villata, and F. Gandon. A Deontic Logic Semantics for Licenses Composition in the Web
of Data. In Proc. ICAIL’13, pp. . ACM, 2013.

[18] H.-L. Truong, G. R. Gangadharan, M. Comerio, S. Dustdar, and F. De Paoli. On Analyzing and Developing
Data Contracts in Cloud-Based Data Marketplaces. In Proc APSCC 2011, pp. 174–181, 2011.

[19] G. H. von Wright. Norm and Action: A Logical Enquiry. Routledge and Kegan Paul, 1963.

