
Three Concepts of Defeasible Permission

Guido GOVERNATORI a,1, Francesco OLIVIERI a,b,c

Antonino ROTOLO d and Simone SCANNAPIECO a,b,c

a NICTA, Queensland Research Laboratory, Australia 2

b Department of Computer Science, University of Verona, Italy
c Institute for Integrated and Intelligent Systems, Griffith University, Australia

d CIRSFID, University of Bologna, Italy

Abstract In this paper we propose an extension of Defeasible Logic to represent
different concepts of defeasible permission. Special attention is paid in particular
to permissive norms that work as exceptions to opposite obligations.

Keywords. Strong permission, Weak permission, Defeasible Logic

1. Introduction

The concept of permission plays an important role in the legal domain, since it may
be crucial to characterise notions such as those of legal authorisation and derogation
[15]. Despite that, it was not so extensively investigated in deontic logic as the notion of
obligation. For a long time, deontic logicians mostly viewed permission as the dual of
obligation: Pa≡ ¬O¬a. This view is unsatisfactory and has been criticised (see [2,1]).

One important distinction that traditionally contributed to a richer account of this
concept is the one between weak (or negative) and strong (or positive) permission [19].
The former corresponds to saying that some a is permitted if ¬a is not provable as
mandatory. In other words, something is allowed by a (legal) code iff it is not prohibited
by that code. At least when we deal with unconditional obligations, the notion of weak
permission is trivially equivalent to the dual of obligation [12]. The concept of strong
permission is more complicated, as it amounts to saying that some a is strongly permitted
by a (legal) code if such a code explicitly states that a is permitted. The complexities of
this concept depend on the fact that, besides “the items that a code explicitly pronounces
to be permitted, there are others that in some sense follow from the explicit ones”. The
problem is hence “to clarify the inference from one to the other” [12, p. 391–2].

Features such as the distinction between strong and weak permission show the multi-
faceted aspects of permissive norms. However, besides a few exceptions [12,5,6,7,17,16],
most logicians still overlook this research issue. Nevertheless, some significant contri-
butions have been offered by this bunch of literature. In particular, [12,5,6,17] raise and
discuss the following points:

1Corresponding author: guido.governatori@nicta.com.au.
2NICTA is funded by the Australian Government as represented by the Department of Broadband,

Communications and the Digital Economy, the Australian Research Council through the ICT Centre of
Excellence program and the Queensland Government.



• despite some radical critiques [14,13], we should fruitfully keep the distinction
between weak and strong permission;

• we may have different types of strong permissions (or, better, of permissions that
logically follow from explicit permissive norms), according to whether

∗ we statically determine what is actually permitted given what is obligatory and
what is explicitly permitted;

∗ we dynamically determine “the limits on what may be prohibited without vio-
lating static permissions” [5];

• especially in the law, strong permissions can play a role not only in overruling
any incompatible prohibition, but also in stating exceptions to obligations [4];

• strong permissions make sense even when any incompatible prohibitions are not
in the legal system; permissions have a dynamic behaviour and prevent that future
prohibitions hold in general, or apply to specific contexts.

This paper moves from the above points with the purpose of studying the concepts
of weak and strong permission within a new extension of Defeasible Logic (DL) [3].
There are several advantages of this choice:

1. DL is a computationally efficient logical framework able to capture various aspects
of non-monotonic reasoning, and so of the defeasible character of permissive norms;
in particular, we will see that strong permissions can be represented both introducing
a new non-monotonic consequence relation for permission, or not;

2. The proposed extension of DL embeds operators able to express
(a) ordered sequences of contrary-to-duty obligations [9,10], in combination with
(b) ordered sequences of strong permissions which are supposed to derogate or

make exceptions to prohibitions; this is a specific novelty of this contribution, as
sequences of permissions allow us to represent preferences between permissions
(i.e., exceptions) which are not necessarily incompatible with each other.

The layout of the paper is as follows. Section 2 informally discusses how to charac-
terise permissions in DL. Section 3 technically presents the machinery and states some
results. Section 4 discusses some related work and provides a summary of the paper.

2. Three Concepts of Permission

Let us first summarise some preliminary intuitions behind our logical framework.

1. Permissive and prescriptive norms are represented by means of defeasible rules,
whose conclusions normally follow unless they are defeated by contrary evidence.
For example, the rule Order⇒O Pay says that, if we send a purchase order, then we
will be defeasibly obliged to pay; the rule Order,Creditor⇒P ¬Pay states that if we
send an order, we are normally not obliged to pay if we are creditors towards the
vendor for the same amount we have to pay for that order.

2. Rules introduce modalities: if we have a⇒O b and a, then we obtain Ob.
3. For the sake of simplicity, modal literals can only occur in the antecedent of rules.

This is in line with our idea that the applicability of rules labeled with modality X is
the condition for deriving literals modalised with X . In other words, we do not admit
rules such as a1, . . . ,an⇒O Pb.



4. Legal norms often specify mandatory actions to be taken in case of their violation. In
general, obligations in force after some other obligations have been violated corre-
spond to contrary-to-duty (CTD) obligations. These constructions affect the formal
characterisation of compliance since they identify situations that are not ideal, but
still acceptable. A compact representation of CTDs may resort to the non-boolean
connective ⊗ [9]: a formula like x⇒O a⊗ b means that, if x is the case, then a is
obligatory, but if the obligation a is not fulfilled, then the obligation b is activated
and becomes in force until it is satisfied or violated.

Notice that O and P are not simple labels: they are modalities. O is non-reflexive3:
if a rule b1, . . . ,bn⇒O a is applicable, no contrary evidence defeats it, and we know that
¬a is the case, then we do not obtain a conflict between the fact ¬a and the conclusion
of the rule, since such a conclusion is Oa; ¬a consists rather in violation of Oa. On the
other hand, the modality P is logically characterized in such a way as two rules for P
supporting a and ¬a do not clash, but a rule⇒P b attacks a rule⇒O ¬b (and vice versa).

This basic framework already allows us to express three types of permission and
capture different aspects of how defeasibility affects them [18]. Indeed, like standard DL,
our extension is able to establish the relative strength of any rule (hence, to solve rule
conflicts) and has two types of attackable rules: defeasible rules and defeaters. Defeaters
in DL are a special kind of rule: they are used to prevent conclusions but not to support
them. For example, SpecialOrder,PremiumCustomer ;O ¬PayBy7Days states that pre-
mium customers placing special orders might be exempt from paying by 7 days: it can
prevent the derivation of an obligation to pay within the deadline, but it cannot be used
to directly derive any conclusion.

Weak Permission A first way to define permissions in DL is by simply considering
weak permissions and stating that the opposite of what is permitted is not provable as
obligatory. Consider a normative system consisting of just the following two rules:

r1 : Park,Vehicle⇒O ¬Enter r2 : Park,Emergency⇒O Enter

Here the normative system does not contain any permissive norm. However, since DL is
a skeptical non-monotonic logic, in case both r1 and r2 could fire we cannot conclude
either that it is prohibited to enter nor that it obligatory, because we do not know what
rule is stronger. Hence, in this context, both ¬Enter and Enter are weakly permitted.

This is the most direct way to define the idea of weak permission: something is
permitted by a code iff it is not prohibited by that code. In the formal language, this
possibility consists in adding the modality P without having specific rules for it. Indeed,
we can have modal literals, such as Pq in the antecedent of a rule (which can be obtained
by showing that no opposite obligation is provable).

Explicit Permissions Are Defeaters. Any defeasible rule supporting some Oa can lead
to infer this obligation and also block another obligation O¬a. In this sense, this type of
rule is not fully satisfactory to investigate the concept of permission, since it can only be
used to characterize the notion of weak permission. Thus, there are good reasons to argue
that defeaters for O are suitable to express an idea of strong permission [11]. Explicit
rules such as r : a ;O q state that a is a specific reason for blocking the derivation of O¬q
(but not for proving something): this rule does not support any conclusion but states that
q is not undesirable from the deontic perspective. Consider this example:

3As is well-known, in a non-reflexive modal logic a does not follow from Xa, where X is a modal operator.



r1 : Weekend,AirPollution⇒O ¬UseCar r2 : Weekend,Emergency ;O UseCar

Rule r1 states that on weekends it is forbidden to use private cars if certain air pollution
limit values are exceeded. Defeater r2 is in fact an exception to r1, and so it seems to
capture the above recalled idea that explicit permissive norms (especially in the law)
provide exceptions to obligations.

Using Permissive Rules Another approach is based on introducing specific rules for
deriving permissions [12,5]. Let us consider the following scenario:

r1 : Weekend,AirPollution⇒O ¬UseCar r′2 : Weekend,Emergency⇒P UseCar

As r2 in the previous scenario, r′2 looks like an exception to r1. The apparent differ-
ence between r2 and r′2 is that the latter is directly used to prove PUseCar. The question
is: does it amount to a real difference?

Indeed, also r2, although it is a defeater, is specifically used to derive it. In addition,
rules like r′2 do not attack other permissive rules, but are in conflict only with rules for
obligation that allow to prove the opposite conclusion of the permission we want to
derive. This precisely holds for defeaters.

Moreover, let us suppose to have a defeater s : a ;P b. Does s attack a rule like
⇒P ¬b? If this was the case, s would be close to an obligation (Pb does not attack P¬b),
thus making useless to introduce defeaters for P. But, if this is not the case, s can only
attack⇒O ¬b, thus being equivalent with s′ : a ;O b.

Hence, although it is admissible to have defeaters, we do not need to distinguish
defeaters for O from those for P.

One significant difference between ; and ⇒P is that only the latter rule type can
meaningfully express preference orders among different permissions which are supposed
to explicitly derogate or make exceptions to prohibitions. To do so, the formal language
can be enriched as follow:

5. What we have done at point 4 above with the operator ⊗ can be extended to permis-
sive rules with the subscripted arrow ⇒P. In other words, we can introduce a new
non-boolean connective � for sequences of permissions. As done with ⊗, given a
rule r :⇒P a� b, we can proceed through the �-chain to obtain the derivation of
Pb. However, strictly speaking, permissions cannot be violated and does not make
sense that, given ¬a, we get Pb from r. Rather, the reason to proceed here in the
chain is that the normative system allows us to show that O¬a is provable or at least
defeats rule r, the one supporting Pa. Hence, � still establishes a preference order
among strong permissions and, in case opposite obligations at least defeat the first n
permissions in the chain, the subsequent n+1th permission holds. This is significant
especially when strong permissions are exceptions to obligations.

Consider the following scenario:

Facts = {¬CallFiremen,¬CallAmbulance,Fire,CarCrash, Injured}

Rules = {r1 : CarCrash⇒O CallAmbulance⊗Help

r2 : Fire⇒O CallFiremen⊗Extinguish

r3 : Fire,CarCrash, Injured,¬CallAmbulance⇒P ¬Help�¬Extinguish}

Priorities = r3 is stronger than r2 and weaker than r1



Rule r1 says that, if you are in a close proximity of a car crash, you are under the
obligation to call an ambulance; if you do not do it for some reason, you still have the
obligation to help. Rule r2 states that, in case of fire, you have the obligation to call fire
brigades, but if you do not do it you have to try to extinguish the fire. Finally, rule r3
provides an order between two exceptions in a case where you are in proximity of a fire,
of a car crash, you are injured and have not called an ambulance. All rules are triggered.
r1 leads to obtain OCallAmbulance, which is violated by a fact, so the obligation to help
follows. The primary obligation of r2 is violated, but r3 is applicable, too, and is stronger
than r2: this leads to derive P¬Extinguish, so there is no way to compensate the violation
of OCallFiremen, since r3 provides a secondary exception.

The next section presents in detail the logical framework able to express the three
types of defeasible permissions that we have informally discussed so far: weak defeasi-
ble permission, strong defeater-based permission, and strong permission admitting pref-
erence orders.

3. Defeasible Deontic Logic with Strong Permission

In this section we first introduce the language adopted to formalise obligation and
(strong) permissions in DL, and then we introduce the inferential mechanism in form
of proof conditions defining the logic. Finally we show that the proposed formalisation
enjoys properties suitable for the modelling of the notion of strong permission.

Let PROP be a set of propositional atoms, MOD= {O,P} the set of modal operators,
and Lab be a set of arbitrary labels. The set Lit = PROP∪{¬p | p ∈ PROP} denotes the
set of literals. The complementary of a literal q is denoted by ∼q; if q is a positive literal
p, then ∼q is ¬p, and if q is a negative literal ¬p, then ∼q is p. The set of modal literals
is ModLit = {Xl,¬Xl | l ∈ Lit, X ∈MOD}.

We introduce two preference operators, ⊗ for obligations, and � for permissions,
and we will use � when we refer to one of them generically. These operators are used to
build chains of preferences, called �-expressions.

The formation rules for well-formed �-expressions are: (a) every literal is an �-
expression; (b) if A is an ⊗-expression, B is an �-expression and c1, . . . ,ck are literals
then A⊗c1⊗·· ·⊗ck is an⊗-expression, B�c1�·· ·�ck is an�-expression, A�B is an
�-expression; (c) every ⊗-expression and �-expression is an �-expression; (d) nothing
else is an �-expression. We adopt the standard DL definitions of strict rules, defeasible
rules, and defeaters [3]. However, for the sake of simplicity, and to better focus on the
non-monotonic aspects that DL offers, in the remainder we use only defeasible rules and
defeaters. In addition, we have to take the modal operators into account. Every rule is of
the type r : a1, . . . ,an ↪→C, where
1. r ∈ Lab is the name of the rule;
2. a1, . . . ,an, the antecedent of the rule, is the set of the premises of the rule (alterna-

tively, it can be understood as the conjunction of all the literals in it). Each ai is either
a literal or a modal literal;

3. ↪→∈{⇒X ,;} denotes the type of the rule. If ↪→ is⇒X , the rule is a defeasible rule,
while if ↪→ is ;, the rule is a defeater. The subscript X ∈MOD in defeasible rules
represents the modality introduced by the rule itself. The mode of a rule tells us what
kind of conclusion we can obtain from the rule; as we argued, we do not need to
label ; with any modality.



4. C is the consequent (or head) of the rule, which is an �-expression. Two constraints
apply on the consequent of a rule: (a) if ↪→ is ;, then C is a single literal; (b) if
X = P, then C must be an �-expression.

Given an �-expression A, the length of A is the number of elements in it. Given an
�-expression A� b, the index of b is n iff the length of A� b is n. We also say that b
appears at index n in A�b. R[a,k] is the set of rules where element a is at index k in the
head of the rules.

Given a set of rules R, we will use the following abbreviation for specific subsets of
rules:

• Rde f denotes the set of all defeaters in the set R;
• R[q,n] is the set of rules where q appears at index n in the consequent;
• RO[q,n] is the set of (defeasible) rules where q appears at index n and the operator

at index n− 1 is ⊗; the set of (defeasible) rules where q appears at any index n
satisfying the above constraints is denoted by RO[q];

• similarly RP[q,n] is the set of rules where q appears at index n, and the operator
at index n− 1 is �; the set of (defeasible) rules where q appears at any index n
satisfying the above constraints is denoted by RP[q].

A Defeasible Theory is a structure (F,R,�), where F , the set of facts, is a set of
literals and modal literals, R is a set of rules and �, the superiority relation, is a binary
relation over R.

A theory corresponds to a normative system, i.e., a set of norms, where every norm is
modelled by rules. The superiority relation is used for conflicting rules, i.e., rules whose
conclusions are complementary literals, in case both rules fire. Notice that we do not
impose any restriction on the superiority relation: it is just a binary relation determining
the relative strength of two rules.

Proofs in a defeasible theory T are linear derivations, i.e., sequences of tagged liter-
als in the form of +∂X q and −∂X q. Given X ∈MOD, +∂X q means that q is defeasibly
provable in T with modality X , while−∂X q means that q is defeasibly refuted. The initial
part of length i of a proof P is denoted by P(1..i).

The first thing to do is to define when a rule is applicable or discarded. A rule is
applicable for a literal q if all non-modalised literals in the antecedent are given as facts
and all the modalised literals have been proved (with the appropriate modalities). On the
other hand, a rule is discarded if at least one of the modalised literals in the antecedent
has not been proved (or is not a fact in the case of non-modalised literals). However, as
literal q could not appear as the first element in an �-expression in the head of the rule,
some additional conditions on the consequent of rules must be satisfied.

Definition 1. A rule r∈R[q, j] such that C(r)= c1⊗·· ·⊗cl−1�cl�·· ·�cn is applicable
for literal q at index j, with 1≤ j < l, in the condition for ±∂O iff

(1) for all ai ∈ A(r):
(1.1) if ai = Ol then +∂Ol ∈ P(1..n);
(1.2) if ai = ¬Ol then −∂Ol ∈ P(1..n);
(1.3) if ai = Pl then +∂Pl ∈ P(1..n);
(1.4) if ai = ¬Pl then −∂Pl ∈ P(1..n);
(1.5) if ai = l ∈ Lit then l ∈ F, and

(2) for all ck ∈C(r), 1≤ k < j, +∂Ock ∈ P(1..n) and (ck 6∈ F or ∼ck ∈ F).



Conditions (1.1)–(1.5) represent the above requirements; condition (2) on the head of
the rule states that each element ck prior to q must be derived as an obligation, and a
violation of such obligation has occurred.
Definition 2. A rule r∈R[q, j] such that C(r)= c1⊗·· ·⊗cl−1�cl�·· ·�cn is applicable
for literal q at index j, with l ≤ j ≤ n in the condition for ±∂P iff

(1) for all ai ∈ A(r):
(1.1) if ai = Ol then +∂Ol ∈ P(1..n);
(1.2) if ai = ¬Ol then −∂Ol ∈ P(1..n);
(1.3) if ai = Pl then +∂Pl ∈ P(1..n);
(1.4) if ai = ¬Pl then −∂Pl ∈ P(1..n);
(1.5) if ai = l ∈ Lit then l ∈ F, and

(2) for all ck ∈C(r), 1≤ k < l, +∂Ock ∈ P(1..n) and (ck 6∈ F or ∼ck ∈ F), and
(3) for all ck ∈C(r), l ≤ k < j, −∂Pck ∈ P(1..n).

The only difference with respect to±∂O is the presence of an additional condition, stating
that all permissions prior to q must be refuted (condition (3)).
Definition 3. A rule r ∈R[q, j] such that C(r) = c1⊗·· ·⊗cl−1�cl�·· ·�cn is discarded
for literal q at index j, with 1≤ j ≤ n in the condition for ±∂O or ±∂P iff

(1) there exists ai ∈ A(r) such that
(1.1) if ai = Ol then −∂Ol ∈ P(1..n);
(1.2) if ai = ¬Ol then +∂Ol ∈ P(1..n);
(1.3) if ai = Pl then −∂Pl ∈ P(1..n);
(1.4) if ai = ¬Pl then +∂Pl ∈ P(1..n);
(1.5) if ai = l ∈ Lit then l 6∈ F, or

(2) there exists ck ∈C(r), 1≤ k < l, such that either −∂Ock ∈ P(1..n) or ck ∈ F, or
(3) there exists ck ∈C(r), l ≤ k < j, such that +∂Pck ∈ P(1..n).
In this case, condition (2) ensures that an obligation prior to q in the chain is not in force
or has already been fulfilled (thus, no reparation is required), while condition (3) states
that there exists at least one explicit derived permission prior to q.

We now introduce the proof conditions for ±∂O and ±∂P.

+∂O: If P(n+1) = +∂Oq then
(1) Oq ∈ F or

(2.1) O∼q 6∈ F and ¬Oq 6∈ F and P∼q 6∈ F and
(2.2) ∃r ∈ RO[q, i] such that r is applicable for q, and
(2.3) ∀s ∈ R[∼q, j], either

(2.3.1) s is discarded, or either
(2.3.2) s ∈ RO and ∃t ∈ R[q,k] such that t is applicable for q and t � s, or
(2.3.3) s ∈ RP∪Rde f and ∃t ∈ RO[q,k] such that t is applicable for q and t � s.

To show that q is defeasibly provable as an obligation, there are two ways: (1) the obli-
gation of q is a fact, or (2) q must be derived by the rules of the theory. In the second
case, three conditions must hold: (2.1) ∼q is not provable as an obligation using the set
of modalised facts at hand; (2.2) there must be a rule introducing obligation for q which
can apply; (2.3) every rule s for ∼q is discarded or defeated by a stronger rule for q. If s
is an obligation rule, then it can be counterattacked by any type of rule; if s is a defeater
or a permission rule, then only an obligation rule can counterattack it.



Here below are the conditions for −∂O and ±∂P:

−∂O: If P(n+1) =−∂Oq then
(1) Oq 6∈ F and either

(2.1) O∼q ∈ F or ¬Oq ∈ F or P∼q ∈ F or
(2.2) ∀r ∈ RO[q, i] either r is discarded for q, or
(2.3) ∃s ∈ R[∼q, j] such that

(2.3.1) s is applicable for ∼q, and
(2.3.2) if s ∈ RO then ∀t ∈ R[q,k], either t is discarded or t 6� s, and
(2.3.3) if s ∈ RP∪Rde f then ∀t ∈ RO[q,k], either t is discarded or t 6� s.

+∂P: If P(n+1) = +∂Pq then
(1) Pq ∈ F or

(2.1) O∼q 6∈ F and ¬Pq 6∈ F and
(2.2) ∃r ∈ RP[q, i] such that r is applicable for q, and
(2.3) ∀s ∈ RO[∼q, j], either

(2.3.1) s is discarded for ∼q, or
(2.3.2) ∃t ∈ R[q,k] such that t is applicable for q and t � s.

This last proof condition differs from its counterpart for obligation in two aspects: we
allow scenarios where both +∂Pq and +∂P∼q hold, but +∂O∼q must not hold (2.1); any
applicable rule s supporting ∼q can be counterattacked by any type of rule t supporting
q, as s must be an obligation rule, and permission rules can only be attacked by obligation
rules (2.3).

−∂P: If P(n+1) =−∂Pq then
(1) Pq 6∈ F and either

(2.1) O∼q ∈ F or ¬Pq ∈ F , or
(2.2) ∀r ∈ RP[q, i], either r is discarded, or
(2.3) ∃s ∈ RO[∼q, j] such that

(2.3.1) s is applicable for ∼q, and
(2.3.2) ∀t ∈ R[q,k], either t is discarded or t 6� s.

The logic resulting from the above proof conditions enjoys properties describing the
appropriate behaviour of the modal operators. A Defeasible Theory D is consistent iff
F does not contain pairs of complementary (modal) literals, thus if D does not contain
pairs like Ol and ∼Ol, Pl and ∼Pl, and l and ∼l. A Defeasible Theory D is O-consistent
iff for any literal l, F does not contain any of the following pairs: Ol and O∼l, Ol and
P∼l.

As usual, given a Defeasible Theory D we will use D `±∂2p iff there is a derivation
of ±∂2p from D.

Proposition 1. Let D be a consistent Defeasible Theory, and 2 ∈ {O,P}. For any literal
l, it is not possible to have both D `+∂2l and D ` −∂2l.

The meaning of the above proposition is that it not possible to prove that a literal is
at the same time obligatory and not obligatory, and permitted and not permitted.

Proposition 2. Let D be an O-consistent Defeasible Theory, then for any literal l, it is
not possible to have both D `+∂Ol and D `+∂O∼l.



The meaning of the proposition is that no formula is both obligatory and forbidden
at the same time. However, the proposition does not hold for permission. It is possible to
have both the explicit permission of l and the explicit permission of ∼l.

The basic relationships between permissions and obligations are governed by the
following proposition:

Proposition 3. Let D be an O-consistent Defeasible Theory. For any literal l:

1. if D `+∂Ol, then D ` −∂O∼l;
2. if D `+∂Ol, then D ` −∂P∼l;

3. if D `+∂Pl, then D ` −∂O∼l.

The combination of the two items above describes the consistency between obliga-
tion and permission. Part 3 also gives the relationships between strong and weak permis-
sion. As we discussed in Section 1, a weak permission is a permission obtained from the
failure to derive the opposite obligation. This means that we have the weak permission
of p, when we have −∂O∼p, and Proposition 3 Part 3 guarantees that we have it when
we have +∂P p.

Let us see how the logic works with the example introduced at the end of Section 1.

Example. Let us recall the scenario reported at the end of Section 2, and formally ex-
plain the conclusions of the theory using applicability of rules and proof tags as de-
fined above. The primary obligation to call the ambulance is obtained (i.e. we derive
+∂OCallAmbulance), but the obligation is violated as ¬CallAmbulance ∈ F , making r1
applicable for Help; rule r3 is applicable for literal ¬Help and could attack r1, but r1� r3,
thus we have also +∂OHelp. Also CallFiremen is derived as an obligation but it is vio-
lated, thus rule r2 is applicable for literal Extinguish for +∂O. As +∂OHelp holds, r3 is
applicable for ¬Extinguish, and r3 � r2, thus we derive +∂P¬Extinguish.

4. Summary and Related Work

In this paper we proposed an extension of Defeasible Logic (DL) to represent three con-
cepts of defeasible permission. In particular, we have discussed different types of explicit
permissive norms that work as exceptions to opposite obligations. Also, we considered
how strong permissions can be represented both with and without introducing a new con-
sequence relation for inferring conclusions from explicit permissive norms. Finally, we
combined a preference operator applicable to contrary-to-duty obligations with a new
one representing ordered sequences of strong permissions which derogate to prohibi-
tions. The contribution is new as compared to our previous work (such as [9,10,8]), since
(1) it systematically discusses different concepts of permissions in DL, which were only
briskly introduced in [8] to discuss their interplay with intentions and beliefs in MAS,
and (2) it proposes a new concept of permission admitting preference orderings, which
is not considered in any of our earlier contributions on preference deontic logics [9,10].

The works in the literature that are closer to our approach are [12,5,17] which, how-
ever, are all based on Input/Output logic. It is difficult to compare in detail that formalism
with DL, but there are some general similarities: those works (a) model weak and strong
permissions by distinguishing in an analogous way a consequence relation for obliga-
tion and one for permission; (b) distinguish, in a way similar to what we do, between



permissions rebutting obligations and permissions providing exceptions; (c) distinguish
between static and dynamic permissions: in particular, the former concept of [12,5] can
be directly expressed in our framework, while the latter can be captured but in a different
way, due to the skeptical character of DL (see [5, Definition 2]). We believe, in particular,
that a study of the relation between our approach and the one in [12,5] can shed light
on more specific properties that the just presented concepts of permission enjoy: space
reasons do not allow us to address this issue, which is left to future research.

Although the introduction of the new operator� to express preferences between ex-
plicit permissions is a novelty of this paper, a somehow similar idea has been suggested
(though with different purposes) by [5], where a preference relation among generators
(for obligations and permissions) was introduced. Technically, it is not clear if that ap-
proach can reframed in our setting. In fact, adopting that option in DL would not work,
as the superiority relation in DL plays a role in the proof theory only in case of rule con-
flicts. A clear advantage of the current proposal is anyway that it adopts a richer formal
language with modal operators, which can occur in the applicability conditions of rules.

References

[1] C.E. Alchourrón. Philosophical foundations of deontic logic and the logic of defeasible conditionals. In
J. J. Meyer and R. J. Wieringa, editors, Deontic Logic in Computer Science: Normative System Specifi-
cation. Wiley, 1993.

[2] C.E. Alchourrón and E. Bulygin. Permission and permissive norms. In W. Krawietz et al., editor, Theorie
der Normen. Duncker & Humblot, 1984.

[3] G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Representation results for defeasible logic.
ACM Trans. Comput. Logic, 2:255–287, 2001.

[4] N. Bobbio. Teoria della norma giuridica. Giappichelli, 1958.
[5] G. Boella and L. van der Torre. Permissions and obligations in hierarchical normative systems. In

Proceedings of ICAIL 2003. ACM Press, 2003.
[6] G. Boella and L. van der Torre. Permissions and undercutters. In Proceedings of the NRAC’03, Aca-

pulco, 2003.
[7] M.A. Brown. Conditional obligation and positive permission for agents in time. Nordic Journal of

Philosophical Logic, 5(2):83–111, 2000.
[8] G. Governatori, V. Padmanabhan, A. Rotolo, and A. Sattar. A defeasible logic for modelling policy-

based intentions and motivational attitudes. Logic Journal of the IGPL, 17(3):227–265, 2009.
[9] G. Governatori and A. Rotolo. Logic of violations: A Gentzen system for reasoning with contrary-to-

duty obligations. Australasian Journal of Logic, 4:193–215, 2006.
[10] G. Governatori and A. Rotolo. Justice delayed is justice denied: Logics for a temporal account of

reparations and legal compliance. In Proceedings of CLIMA XII. Springer, 2011.
[11] G. Governatori, A. Rotolo, and G. Sartor. Temporalised normative positions in defeasible logic. In

Proceedings of ICAIL 2005. ACM Press, 2005.
[12] D. Makinson and L. van der Torre. Permission from an input/output perspective. Journal of Philosoph-

ical Logic, 32(4):391–416, 2003.
[13] K. Opalek and J. Wolenski. Normative systems, permission and deontic logic. Ratio Juris, 4, 1991.
[14] A. Ross. Directives and norms. Routledge and Kegan Paul, 1968.
[15] G. Sartor. Legal Reasoning: A Cognitive Approach to the Law. Springer, 2005.
[16] A. Stolpe. Relevance, derogation and permission. In Proceedings of DEON 2010. Springer, 2010.
[17] A. Stolpe. A theory of permission based on the notion of derogation. J. Applied Logic, 8(1):97–113,

2010.
[18] L. van der Torre and Y.-H. Tan. The many faces of defeasibility in defeasible deontic logic. In D. Nute,

editor, Defeasible Deontic Logic. Kluwer, 1997.
[19] G.H. Wright. Norm and action: A logical inquiry. Routledge and Kegan Paul, 1963.


