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Abstract—The import of the notion of institution in the design
of MASs requires to develop formal and efficient methods for
modeling the interaction between agents’ behaviour and norma-
tive systems. This paper discusses how to check whether agents’
behaviour complies with the rules regulating them. The key point
of our approach is that compliance is a relationship between two
sets of specifications: the specifications for executing a process
and the specifications regulating it. We propose a formalism for
describing both the semantics of normative specifications and the
semantics of compliance checking procedures.

I. INTRODUCTION

Recent developments in MAS have pointed out that norma-

tive concepts can play a crucial role in modeling agents’ inter-

action [15], [6]. In fact, while the main objective is to design

systems of autonomous agents, it is likewise important that

agent systems may exhibit global desirable properties. Like in

human societies, such properties are ensured if the interaction

of artificial agents, too, adopts institutional and organizational

models whose goal is to regiment agents’ behaviour through

normative systems in supporting coordination, cooperation

and decision-making. However, to keep agents autonomous

it is often suggested that norms should not simply work as

hard constraints, but rather as soft constraints [4]. In this

sense, norms should not limit in advance agents’ behaviour,

but would instead provide standards which can be violated,

even though any violations should result in sanctions or other

normative effects applying to non-compliant agents.

If normative systems for MAS are designed as mentioned

above, it is of paramount importance to develop mechanisms to

characterizing and detecting agents’ norm compliance. To our

knowledge, no systematic investigation has been devoted so far

to this research issue in MAS theory, whereas its importance

has increased over the last few years in other related fields

such as in business modeling. In this perspective, compliance

is essentially ensuring that business processes, operations and

practise are in accordance with a prescribed and/or agreed set

of norms. Compliance is often used to denote adherence of

one set of rules against other set of rules.

In this paper we apply this interpretation of compliance to

discuss adherence or consistence of a set of rules specifying

a process against a set of “normative” rules regulating it. Of

course, agents’ compliance could be tested by directly focusing

on plan design and execution. The choice of working on

processes is motivated by two reasons. First, modelling agents’

behaviour in terms of processes has been proven useful in

developing agent-oriented systems for business management

(for a recent proposal see, e.g., [3]). The correspondence of

business processes and agent plans makes business services

flexible and adaptable. Second, while it is far from obvious

that complex plan’s actions can be always viewed as processes

(for the pros and cons of this view, see [7]), in institutional

settings agents usually instantiate roles, which consist of a

specification of an agent’s internal and external behavior. In

this sense, taking roles as specific processes (or procedures)

allows for obtaining a flexible team agent structure [14]. Under

this working hypothesis, the problem of norm compliance can

be framed as the relationship between the specifications for

process execution and those regulating it.

Process specifications describe how a process is executed

while norms state what can be done and what cannot be done

by a process. The problem is how to align the language to

specify the activities to be performed to complete a process

and the conditions set up by the norms relevant for the process.

The solution of such a problem is not a trivial matter. The

detection of violations and the design of agents’ compliance

amount to relatively affordable operations when we have to

check whether processes are compliant with respect to simple

normative systems. But things are tremendously harder when

we deal with processes to be tested against realistic, large and

articulated systems of norms.

What do we mean by a “complex” normative system?

Among other things, the complexities of normative systems re-

side in the fact that they regulate agents’s behaviour by usually

specifying actions to be taken in case of breaches of some of

the norms, actions which can vary from (pecuniary) penalties

to the termination of an interaction itself. These constructions,

i.e., obligations in force after some other obligations have been

violated, are known in the deontic literature as contrary-to-duty

obligations (CTDs) or reparational obligations (because they

are meant to ‘repair’ or ‘compensate’ violations of primary

obligations [5]). Thus a CTD is a conditional obligation arising

in response to a violation, where a violation is signalled by an

unfulfilled obligation. These constructions identify situations

that are not ideal for the interaction but still acceptable. The

ability to deal with violations and the reparational obligations

generated from them is an essential requirement for agents

where, due to the nature of the environment where they are

deployed, some failures can occur, but it does not necessarily

mean that the whole interaction has to fail. However, the main

problem with these constructions is that they can give rise to

very complex rule dependencies, because we can have that

the violation of a single rule can activate other (reparational)

rules, which in turn, in case of their violation, refer to other

rules, and so forth.

In this paper, we take inspiration from an approach origi-

nally designed for modeling business process compliance [10].
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This approach is based on (semantic) annotations in the same

formal language as that of the normative specifications. The

idea is that processes are annotated and the annotations provide

the conditions a process has to comply with.1

II. NORMATIVE CONSTRAINTS FOR MAS

The expression of violation conditions and the reparation

obligations are important requirements for formalising norms,

designing subsequent processes to minimise or dealing with

such violations and also determining the compliance of a

process with the relevant norms. The violation expression

consists of the primary obligation, its violation conditions, an

obligation generated upon the violation condition occurs, and

this can recursively be iterated, until the final condition is

reached. This final condition is one which cannot be violated

and this it is to be a permission. We introduce the non-boolean

connective ⊗, whose interpretation is such that OA⊗OB is

read as “OB is the reparation of the violation of OA”. In other

words the interpretation of OA⊗OB, is that A is obligatory, but

if the obligation OA is not fulfilled (i.e., when ¬A is the case),

then the obligation OB is activated and becomes in force until

it is satisfied or violated. In the latter case a new obligation

may be activated, followed by others in chain, as appropriate.

We now provide a formal account of the idea presented

above. Our formalism, called Process Compliance Language

(PCL), is a combination of an efficient non-monotonic for-

malism (defeasible logic [1], [2]) and a deontic logic of viola-

tions [11]. This particular combination allows us to represent

exceptions as well as the ability to capture violations and

the obligations resulting from the violations; in addition our

framework is computational feasible: the extension of a theory

can be computed in time linear to the size of the theory.

The ability to handle violations is very important for com-

pliance of agents’ processes. Often agents operate in dynamic

and somehow unpredictable environments. As a consequence

in some cases, maybe due to external circumstances, it is

not possible to operate in the way specified by the norms,

but the norms prescribe how to recover from the resulting

violations. In other cases, the prescribed behaviours are subject

to exceptions. Finally, in other cases, one might not have

a complete description of the environment. Accordingly the

process has to operate based on the available input (this is

typically the case of the due diligence prescription), but if

more information were available, then the task to be performed

could be a different one. A conceptually sound formalisation of

norms (for assessing the compliance of a process) should take

into account all the aspects mentioned above. PCL is sound in

this respect given the combinations of the deontic component

(able to represent the fundamental normative positions and

chains of violations/reparations) and the defeasible component

that takes care of the issue about partial information and

possibly conflicting prescriptions.

Our formal language consists of the following set of atomic

symbols: a numerable set of propositional letters p,q,r, . . . ,

1For a comprehensive exposition of compliance for business process
models, see [13]

intended to represent the state variables and the tasks of a

process. Formulas of PCL are constructed using the deontic

operators O (for obligation), P (for permission), negation ¬
and the non-boolean connective ⊗ (for the CTD operator)

according to the following formation rules:

• every propositional letter is a literal;

• the negation of a literal is a literal;

• if X is a deontic operator and l is a literal then Xl and

¬Xl are deontic literals.

After we have defined the notions of literal and deontic literal

we can use the following set of formation rules to introduce

⊗-expressions, i.e., the formulas used to encode chains of

obligations and violations.

• every deontic literal is an ⊗-expression;

• if Ol1, . . . ,Oln are deontic literals and ln+1 is a literal,

then Ol1 ⊗ . . .⊗Oln and Ol1 ⊗ . . .⊗Oln ⊗Pln+1 are ⊗-

expressions.

The connective ⊗ permits combining primary and CTD obli-

gations into unique regulations. Each norm is represented by a

rule in PCL, where a rule is an expression r : A1, . . . ,An ⇒C,

where r is the name/id of the norm, A1, . . . ,An, the antecedent
of the rule, is the set of the premises of the rule and C is

the conclusion of the rule. Each Ai is either a literal or a

deontic literal and C is an ⊗-expression. The meaning of a

rule is that the normative position (obligation, permission,

prohibition) represented by the conclusion of the rule is in

force when all the premises of the rule hold.

PCL is equipped with a superiority relation (a binary

relation) over the rule set. The superiority relation (≺) de-

termines the relative strength of two rules, and it is used

when rules have potentially conflicting conclusions; e.g., given

r1 : A ⇒ OB⊗OC and r2 : D ⇒ O¬C, r1 ≺ r2 means that rule

r1 prevails over rule r2 in situations where both fire and they

are in conflict (i.e., r1 fires for the secondary obligation OC).

Given the structure of rules in PCL, it is possible that the

(normative) meaning of a rule is included in another rule.

Consider for example the rules A ⇒ OB⊗OC and A ⇒ OB.

Intuitively the first rule subsumes the second one, as the

behaviour (or the normative content) of the second rule is

implied by the first rule, and thus the second rule does not add

anything new to the system and it can be safely discarded. For

a comprehensive presentation of PCL, see [8].

III. PROCESS MODELLING

A business process model (BPM) describes the tasks to

be executed (and the order in which they are executed) to

fulfill some objectives of a business. BPMs aim to automate

and optimise business procedures and are typically given in

graphical languages. A language for BPMs usually has at least

two main elements: tasks and connectors. Tasks correspond to

activities to be performed by actors (either human or artificial)

and connectors describe the relationships between tasks: a

minimal set of connectors consists of sequence (a task is

performed after another task), parallel –and-split and and-join–

(tasks are to be executed in parallel), and choice –(x)or-split
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and (x)or-join– (at least (most) one task in a set of task must be

executed). The basic execution semantics of the control flow

aspect of a business process model is defined using token-

passing mechanisms, as in Petri Nets [16].

A process model is seen as a graph with nodes of various

types –a single start and end node, task nodes, XOR split/join

nodes, and parallel split/join nodes– and directed edges (ex-

pressing sequentiality in execution). The number of incoming

(outgoing) edges are restricted as follows: start node 0 (1), end

node 1 (0), task node 1 (1), split node 1 (>1), and join node

>1 (1). The location of all tokens, referred to as a marking,

manifests the state of a process execution. An execution of

the process starts with a token on the outgoing edge of the

start node and no other tokens in the process, and ends with

one token on the incoming edge of the end node and no

tokens elsewhere. Task nodes are executed when a token on

the incoming link is consumed and a token on the outgoing

link is produced. The execution of a XOR (Parallel) split node

consumes the token on its incoming edge and produces a token

on one (all) of its outgoing edges, whereas a XOR (Parallel)

join node consumes a token on one (all) of its incoming edges

and produces a token on its outgoing edge.

We extend BPMs with sets of annotations, where the

annotations describe (i) the artifacts or effects of executing

tasks in a process and (ii) the rules describing the obligations

(and other normative positions) relevant for the process. As

for the semantic annotations, the vocabulary is presented as a

set of predicates P. There is a set of process variables over

which logical statements can be made, in the form of literals

involving these variables. The task nodes can be annotated

using effects which are conjunctions of literals using the

process variables. The meaning is that, if executed, a task

changes the state of the world according to its effect: every

literal mentioned by the effect is true in the resulting world;

if a literal l was true before, and is not contradicted by the

effect, then it is still true (i.e., the world does not change of

its own accord).

IV. COMPLIANCE CHECKING

Our aim in the compliance checking is to figure out (a)

which obligations will definitely appear when executing the

process, and (b) which of those obligations may not be

fulfilled. In a way, PCL constraint expressions for a normative

system define a behavioural and state space which can be used

to analyse how well different behaviour execution paths of a

process comply with the PCL constraints. Our aim is to use

this analysis as a basis for deciding whether execution paths

of a process are compliant with the PCL and thus with the

normative system modelled by the PCL specifications. To this

end we use the following procedure:

1) We traverse the graph describing the process and we

identify the sets of effects (sets of literals) for all the

tasks (nodes) in the process according to the execution

semantics outlined in Section III.

2) For each task we use the set of effects for that particular

task to determine the normative positions (obligations,

A: Enter New 
Customer 

Information

B: Identity 
Check

J: Notify 
Customer and 
Close Case

G: Accept initial 
Deposit

F: Apply 
Account Policy

E: Open 
Account

D: Approve 
Account 
Opening

I: Initiate 
Account

C: Login for 
Existing 

Customer

H: Accept 
Empty Initial 

Balance 

Task Semantic Annotation Task Semantic Annotation
A newCustomer(x) B checkIdentity(x)
C checkIdentity(x),

recordIdentity(x)
D accountApproved(x)

E owner(x,y), account(y) F accountType(y, type)
G positiveBalance(y) H ¬positiveBalance(y)
I accountActive(y) J notify(x,y)

r1 : newCustomer(x) ⇒ OcheckIdentity(x)
r2 : checkIdentity(x) ⇒ OrecordIdentity(x)

r3 : account(y) ⇒ OpositiveBalance(y)⊗OapproveManager(y)
r4 : account(x),owner(x,y),accountType(x,V IP) ⇒ P¬positiveBalance(x)

Fig. 1. Business Process, Annotations and Rules

permissions, prohibitions) triggered by the execution of

the task. This means that effects of a task are used

as a set of facts, and we compute the conclusions of

the defeasible theory resulting from the effects and the

PCL rules annotating the process. In the same way we

accumulate effects, we also accumulate (undischarged)

obligations from one task in the process to the task

following it in the process.

3) For each task we compare its effects and the obligations

accumulated up to it. If an obligation is fulfilled by

a task, we discharge the obligation, if it is violated

we signal this violation. Finally if an obligation is not

fulfilled nor violated, we keep the obligation in the

stack of obligations and propagate the obligation to the

successive tasks.

Here, we assume that the obligations derived from a task

should be fulfilled in the remaining of the process. Variations

of this schema are possible (see [13]).

A reparation chain is in force if there is a rule whose

consequent is this reparation chain and a set of facts (effects of

a task in a process) includes the rule antecedents. In addition

we assume that, once in force, a reparation chain remains as

such unless we can determine that it has been violated or

the obligations corresponding to it have all been obeyed to

(these are two cases when we can discharge an obligation

or reparation chain). Therefore it is not possible to have two

instances at the same time of the same reparation chain.

A reparation chain in force is uniquely determined by the

combination of the task T when the chain has been derived

and the rule R from which the chain has been obtained.
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The procedure for compliance checking is based on

two algorithms, ComputeObligations and CheckCompliance.

ComputeObligations is a straightforward extension of defea-

sible logic conditions to compute the extension of a the-

ory [8]. Given a set of literals S, the effects of a task T ,

ComputeObligations determines the current set Current of

active chains for the process. Current includes the new chains

triggered by the task, as well as the chains carried out from

previous tasks. The algorithm CheckCompliance scans all

elements of Current against the set of literals S, and determines

the state of each reparation chain (C = A1 ⊗A2) in Current.
CheckCompliance operates as follows:

if A1 = OB, then

if B ∈ S, then

remove([T,R,A1 ⊗A2],Current)
remove([T,R,A1 ⊗A2],Unfulfilled)

if [T,R,B1 ⊗B2 ⊗A1 ⊗A2] ∈ Violated then

add([T,R,B1 ⊗B2 ⊗A1 ⊗A2],Compensated)

if ¬B ∈ S, then

add([T,R,A1 ⊗A2],Violated)

add([T,R,A2],Current)
else

add([T,R,A1 ⊗A2],Unfulfilled).

Let us examine the CheckCompliance algorithm. Remember

the algorithm scans all active reparation chains one by one,

and then for each of them reports on the status of it. For each

chain in Current (the set of all active chains), it looks for the

first element of the chain and it determines the content of the

obligation (so if the first element is OB, the content of the

obligation in B). Then it checks whether the obligation has

been fulfilled (B is in the set of effects), or violated (¬B is in

the set of effects), or simply we cannot say anything about it

(B and ¬B are not in the set of effects). In the first case we

can discharge the obligation and we remove the chain from

the set of active chains (similarly if the obligation was carried

over from a previous task, i.e., it was in the set Unfulfilled).

In case of a violation, we add the information about it in the

system. This is done by inserting a tuple with the identifier of

the chain and what violation we have in the set Violated. In

addition, we know that violations can be compensated, thus

if the chain has a second element we remove the violated

element from the chain and put the rest of the chain in the set

of active chains. Here we take the stance that a violation does

not discharge an obligation, thus we do not remove the chain

from the set of active chains2. Finally in the last case, the set

of effects does not tell us if the obligation has been fulfilled or

violated, so we propagate the obligation to the successive tasks

by putting the chain in the set Unfulfilled. The algorithm also

checks whether a chain/obligation was previously violated but

it was then compensated.
The conditions below relate the state of a process based as

reported by the CheckCompliance algorithm and the semantics

2[9] proposed a more fine grained classification of obligations, accordingly
it is possible to have obligations that are discharged when are violated, as
well as obligations that persist in case of a violation. The algorithm can be
easily modified to deal with the types of obligations examined by [9].

for PCL expressions. A process is compliant if the situation

at the end of the process is at least sub-ideal (it is possible

to have violations but these have been compensated for). A

process is fully compliant if it results in an ideal situation.

• A process is compliant iff for all [T,R,A] ∈ Current,
A = OB⊗C, for every [T,R,A,B]∈ Violated, [T,R,A,B]∈
Compensated and Unfulfilled = /0.

• A process is fully compliant iff for all [T,R,A]∈ Current,
A = OB⊗C, Violated = /0 and Unfulfilled = /0.

Accordingly, a process is not compliant if the set of unful-

filled obligations (Unfulfilled) is not empty.
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