
DR-CONTRACT: An
Architecture for e-Contracts
in Defeasible Logic

Guido Governatori* and Duy Hoang Pham
NICTA, Queensland Research Laboratory, Brisbane, Australia
email: {guido.governatori,duyhoang.pham}@nicta.com.au
* Corresponding author

Abstract: We introduce the DR-CONTRACT architecture to represent and reason
on e-Contracts. The architecture extends the DR-device architecture by a deontic
defeasible logic of violation. We motivate the choice for the logic and we show how to
extend RuleML to capture the notions relevant to describe e-contracts for a monitoring
perspective in Defeasible Logic.

Keywords: Defeasible Deontic Logic, Violations, e-Contract.

Reference to this paper should be made as follows: Guido Governatori and Duy
Hoang Pham (2009) ‘DR-CONTRACT: An Architecture for e-Contracts in Defeasible
Logic’, Int. J. Business Process Integration and Management, Vol. X, No. Y, pp.W–Z.

Biographical notes: Guido Governatori received his Ph.D. in computer science and
law at the University of Bologna in 1997. Since then he has held academic and research
positions at Imperial College, Griffith University, Queensland University of Technology,
the University of Queensland, and NICTA. He has published more than 160 scientific
papers in logic, artificial intelligence, and database and information systems. His cur-
rent research interests include modal and nonclassical logics, defeasible reasoning and
its application to normative reasoning and e-commerce, agent systems, and business
process modeling for regulatory compliance. He is a member of the editorial board of
Artificial Intelligence and Law.

Duy Hoang Pham is a lecturer at the Faculty of Information Technology, Posts and
Telecommunications Institute of Technology in Vietnam since 1998. In 2000, he was
awarded Master of Technology in Computing (specialisied in Intelligent Systems) at
RMIT University, Australia. From 2005, he carried out PhD research at the School of
Information Technology and Electrical Engineering, the University of Queensland and
at NICTA, Queensland Research Alboratory. His research is sponsored by the Ministry
of Education and Training of Vietnam and NICTA.

1 Introduction

Business contracts are mutual agreements between two
or more parties engaging in various types of economic ex-
changes and transactions. They are used to specify the
obligations, permissions and prohibitions that the signato-
ries should be hold responsible to and to state the actions
or penalties that may be taken in the case when any of the
stated agreements are not being met.

We will focus on the monitoring of contract execu-
tion and performance: contract monitoring is a process
whereby activities of the parties listed in the contract are
governed by the clauses of the contract, so that the cor-

respondence of the activities listed in the contract can be
monitored and violations acted upon. In order to moni-
tor the execution and performance of a contract we need
a precise representation of the ‘content’ of the contract to
perform the required actions at the required time.

The clauses of a contract are usually expressed in a codi-
fied or specialised natural language, e.g., legal English. At
times this natural language is, by its own nature, imprecise
and ambiguous. However, if we want to monitor the exe-
cution and performance of a contract, ambiguities must be
avoided or at least the conflicts arising from them resolved.
A further issue is that often the clauses in a contract show
some mutual inter-dependencies and it might not be evi-
dent how to disentangle such relationships. To implement

1

an automated monitoring system all the above issues must
be addressed.

To deal with some of these issues we propose a formal
representation of contracts. A language for specifying con-
tracts needs to be formal, in the sense that its syntax and
its semantics should be precisely defined. This ensures
that the protocols and strategies can be interpreted un-
ambiguously (both by machines and human beings) and
that they are both predictable and explainable. In addi-
tion, a formal foundation is a prerequisite for verification
or validation purposes. One of the main benefits of this ap-
proach is that we can use formal methods to reason with
and about the clauses of a contract. In particular we can

• analyse the expected behaviour of the signatories in a
precise way, and

• identify and make evident the mutual relationships
among various clauses in a contract.

Secondly, a language for contracts should be conceptual.
This, following the well-known Conceptualization Principle
of Griethuysen (1982), effectively means that the language
should allow their users to focus only and exclusively on
aspects related to the content of a contract, without having
to deal with any aspects related to their implementation.

Every contract contains provisions about the obliga-
tions, permissions, entitlements and others mutual nor-
mative positions the signatories of the contract subscribe
to. Therefore a formal language intended to represent con-
tracts should provide notions closely related to the above
concepts.

A contract can be viewed as a legal document consisting
of a finite set of articles, where each article consists of finite
set of clauses. In general it is possible to distinguish two
types of clauses:

1. definitional clauses, which define relevant concepts oc-
curring in the contract;

2. normative clauses, which regulate the actions of the
parties for contract performance, and include deontic
modalities such as obligations, permissions and prohi-
bitions.

For example the following fragment of a contract of service
taken from Governatori (2005) are definitional clauses

3.1 A “Premium Customer” is a customer who
has spent more that $10000 in goods.

3.2 Service marked as “special order” are subject
to a 5% surcharge. Premium customers are ex-
empt from special order surcharge.

while

5.2 The (Supplier) shall on receipt of a purchase
order for (Services) make them available within
one day.

and

5.3 If for any reason the conditions stated in 4.1
or 4.2 are not met the (Purchaser) is entitled to
charge the (Supplier) the rate of $100 for each
hour the (Service) is not delivered.

are normative clauses. The above fragment should make it
it clear that there is a deep conceptual difference between
Clauses 3.1 and 3.2 on one side, and Clauses 5.2 and 5.3
on the other. The first two clauses are factual/definitional
clauses describing states of affairs, defining notions in the
conceptual space of the contract. For example clause 3.1
defines the meaning of “Premium Customer” for the con-
tract, and Clause 3.2 gives a recipe to compute the price
of services. On the other hand Clauses 5.2 and 5.3 state
the (expected) legal behaviour of the parties involved in
the transaction. In addition there is a difference between
Clause 5.2 and Clause 5.3. Clause 5.2 determines an obli-
gation for one of the parties; on the other hand Clause 5.3
establishes a permission. Hence, according to our previous
discussion about the functionalities of the representation
formalism, a logic meant to capture the semantics of con-
tracts has to account for such issues. For contracts we must
be able to distinguish whether the non-compliance with a
clause of a contract constitutes a breech of the contract or
not (for normative clauses) or when it is just outside the
scope of the contract (for definitional clauses).

Since the seminal work by Lee (1988) Deontic Logic has
been regarded as one on the most prominent paradigms
to formalise contracts. Governatori (2005) further moti-
vates on the need of deontic logic to capture the semantics
of contracts and the reasons to choose it over other for-
malisms.

Clause 3.2 points out another feature. Contract lan-
guages should account for exceptions. In addition, given
the normative nature of contracts, exceptions can be open
ended, that is, it is not possible to give a complete list of
all possible exception to a condition. This means that we
have to work in an environment where conclusions are de-
feasible, i.e., it is possible to retract conclusions when new
pieces of information become available.

From a logical perspective every clause of a contract
can be understood as a rule where we have the conditions
of applicability of the clause and the expected behaviour.
Thus we have that we can represent a contract by a set
of rules, and, as we have already argued, these rules are
non-monotonic. Thus we need a formalism that is able
to reason within this kind of scenario. Our choice here is
Defeasible Logic (we will motivate this choice in section).

Finally Clause 5.3 highlights an important aspect of con-
tracts: contracts often contain provisions about obliga-
tions/permissions arising in response to violations. Stan-
dard Deontic Logic is not very well suited to deal with
violations. Many formalisms have devised to obviate some
problems of violations in deontic logic. In this paper we
will take a particular approach to deal with violation that
can be easily combined with the other component we have
outlined here.

The paper is organised as follows: in Section we present

2

the logic on which the DR-CONTRACT architecture is
based. Then in Section we explain the extension of
RuleML corresponding to the logic of the previous section,
and we establish a mapping between the two languages.
Then, in Section we discuss the system architecture of the
DR-CONTRACT framework. Finally we relate our work
to similar approaches and we give some insights about fu-
ture developments in Section .

2 Defeasible Deontic Logic of Violation

For a proper representation of contracts and to be able
to reason with and about them we have to combine and in-
tegrate logics for various essential component of contracts.
In particular we will use the Defeasible Deontic Logic of
Violation (DDLV) proposed by Governatori (2005). This
logic combines deontic notions with defeasibility and viola-
tions. More precisely DDLV is obtained from the combina-
tion of three logical components: Defeasible Logic, deontic
concepts, and a fragment of a logic to deal with normative
violations. Before presenting the logic we will discuss the
reasons why such notions are necessary for the representa-
tion of contracts.

Grosof (2004) advances Courteous Logic Programming
(CLP) as the inferential engine for business contracts rep-
resented in RuleML. Here, instead, we propose Defeasible
Logic (DL) as the inferential mechanism for RuleML. In
fact, CLP is just a notational variant of one of the many
logics in the family proposed by Antoniou et al. (2000b,a)
(see Antoniou et al. (2000c) for the relationships between
DL and CLP, and Antoniou et al. (2006) for the relation-
ships between DL and Logic Programming in general). Ac-
cordingly, it may be possible to integrate the extensions
we develop in the rest of the paper within a CLP frame-
work. Antoniou et al. (2000a) demonstrate that DL is be a
flexible non-monotonic formalism able to capture different
and sometimes incompatible facets of non-monotonic rea-
soning, and efficient and powerful implementations have
been proposed (for example, Antoniou et al. (2000b); Ma-
her et al. (2001); Bassiliades et al. (2006)). The primary
use of DL in the present context is aimed at the resolution
of conflicts that might arise from the clauses of a contract;
in addition, according to Governatori et al. (2004) DL en-
compasses other existing formalisms proposed in the AI &
Law field, and Governatori and Rotolo (2004); Governa-
tori et al. (2005); Padmanabhan et al. (2006); Governatori
and Rotolo (2008b) show that DL is suitable for extensions
with modal and deontic operators.

DL analyses the conditions laid down by each rule in the
contract, identifies the possible conflicts that may be trig-
gered and uses priorities, defined over the rules, to eventu-
ally solve a conflict. A defeasible theory contains here four
different kinds of knowledge: facts, strict rules, defeasible
rules, and a superiority relation.

Facts are indisputable statements, for example, “the
price of the spam filter is $50”. Facts are represented by

predicates
Price(SpamFilter , 50).

Strict rules are rules in the classical sense: whenever the
premises are indisputable then so is the conclusion. An
example of a strict rule is “A ‘Premium Customer’ is a
customer who has spent $10000 on goods”, formally:

TotalExpense(X, 10000)→ PremiumCustomer(X).

Defeasible rules are rules that can be defeated by contrary
evidence. An example of such a rule is “Premium Cus-
tomer are entitled to a 5% discount”:

PremiumCustomer(X)⇒ Discount(X).

The idea is that if we know that someone is a Premium
Customer, then we may conclude that she is entitled to a
discount unless there is other evidence suggesting that she
may not be (for example if she buys a good in promotion).

The superiority relation among rules is used to define
priorities among them, that is, where one rule may override
the conclusion of another rule. For example, given the
defeasible rules

r : PremiumCustomer(X)⇒ Discount(X)
r′ : SpecialOrder(X)⇒ ¬Discount(X)

which contradict one another, no conclusive decision can
be made about whether a Premium Customer who has
placed a special order is entitled to the 5% discount. But
if we introduce a superiority relation > with r′ > r, then
we can indeed conclude that special orders are not subject
to discount.

We now give a short informal presentation of how con-
clusions are drawn in Defeasible Logic. A conclusion p can
be derived if there is a rule whose conclusion is p, whose
prerequisites (antecedent) have either already been proved
or given in the case at hand (i.e. facts), and any stronger
rule whose conclusion is ¬p has prerequisites that fail to be
derived. In other words, a conclusion p is derivable when:

• p is a fact; or

• there is an applicable strict or defeasible rule for p,
and either

– all the rules for ¬p are discarded (i.e., are proved
to be not applicable) or

– every applicable rule for ¬p is weaker than an
applicable strict1 or defeasible rule for p.

Antoniou et al. (2001); Governatori (2005) offer full pre-
sentations of Defeasible Logic.

We illustrate the inferential mechanism of Defeasible
Logic with the help of an example. Let us assume we have
a theory containing the following rules:

r1 : PremiumCustomer(X)⇒ Discount(X)
r2 : SpecialOrder(X)⇒ ¬Discount(X)
r3 : Promotion(X)⇒ ¬Discount(X)

1Notice that a strict rule can be defeated only when its antecedent
is defeasibly provable.

3

where the superiority relation is thus defined: r3 > r1 and
r1 > r2. The theory states that services in promotion are
not discounted, and so are special orders with the excep-
tion of special orders placed by premium customers, who
are normally entitled to a discount.

In a scenario where all we have is that we received a
special order, then we can conclude that the price has to
be calculated without a discount since rule r1 is not appli-
cable (we do not know whether the customer is a premium
customer or not). In case the special order is received from
a special customer for a service not in promotion, we can
derive that the customer is entitled to a discount. Indeed
rule r1 is now applicable and it is stronger than rule r2,
and r3, which is stronger than r2 is not applicable (i.e., the
service is not in promotion).

The next step is to integrate deontic logic in defeasible
logic. To this end we follow the idea presented by Gover-
natori and Rotolo (2004). In the context of contract we
introduced the directed deontic operators Os,b and Ps,b.
Thus, for example the expression Os,bA means that A is
obligatory such that s is the subject of such an obliga-
tion and b is its beneficiary; similarly for Ps,b, where Ps,bA
means that s is permitted to do A in the interest of b. In
this way it is possible to express rules like the following

PurchaseOrder ⇒ OSupplier ,PurchaserDeliverWithin1Day

that encodes Clause 5.2 of the contract presented above.
Finally, let us sketch how to incorporate a logic for deal-

ing with normative violations within the framework we
have described so far. A violation occurs when an obliga-
tion is disattended, thus ¬A is a violation of the obligation
OA. However, a violation of an obligation does not imply
the cancellation of such an obligation. This makes often
difficult to characterise the idea of violation in many for-
malisms for defeasible reasoning (see, among others van der
Torre and Tan (1997)). We will take and adapt some
intuitions we developed fully by Governatori and Rotolo
(2002, 2006). To reason on violations we have to represent
contrary-to-duties (CTDs) or reparational obligations. As
is well-known, these last are in force only when normative
violations occur and are meant to “repair” violations of pri-
mary obligations. In the spirit of Governatori and Rotolo
(2002, 2006) we introduce the non-classical connective ⊗,
whose interpretation is such that OA⊗OB is read as “OB
is the reparation of the violation of OA”. The connective
⊗ permits to combine primary and CTD obligations into
unique regulations. The operator ⊗ is such that ¬¬A ≡ A
for any formula A and enjoys the properties of associa-
tivity, duplication and contraction. For the purposes of
this paper, it is sufficient to define the following rule for
introducing ⊗:2

Γ⇒ Os,bA⊗ (
⊗n

i=1 Os,bBi)⊗Os,bC

∆,¬B1, . . . ,¬Bn ⇒ Xs,bD

Γ, ∆⇒ Os,bA⊗ (
⊗n

i=1 Os,bBi)⊗Xs,bD
(1)

2The ⊗ is allowed only in the head of defeasible rules. Governatori
(2005) fully motivates this design choice.

where X denotes an obligation or a permission. In this last
case, we will impose that D is an atom. Since the minor
premise states that Xs,bD is a reparation for Os,bBn, i.e.,
the last literal in the sequence

⊗n
i=1 Os,bBi, we can attach

Xs,bD to such sequence. In other words, this rule permits
to combine into a unique regulation the two premises.

Suppose the theory includes

r : Invoice ⇒ Os,bPayWithin7Days
r′ : ¬PayWithin7Days ⇒ Os,bPayWithInterest .

From these rules we obtain

r′′ : Invoice ⇒ Os,bPayWithin7Days⊗Os,bPayWithInterest .

As soon as we applied (⊗I) as much as possible, we have
to drop all redundant rules. This can be done by means of
the notion of subsumption:

Definition 1 Let r1 = Γ⇒ A⊗B⊗C and r2 = ∆⇒ D be
two rules, where A =

⊗m
i=1 Osi,bi

Ai, B =
⊗n

i=1 Osi,bi
Bi

and C =
⊗p

i=1 Xsi,bi
Ci. Then r1 subsumes r2 iff

1. Γ = ∆ and D = A; or

2. Γ ∪ {¬A1, . . . ,¬Am} = ∆ and D = B; or

3. Γ∪{¬B1, . . . ,¬Bn} = ∆ and D = A⊗
⊗k≤p

i=0 Xsi,bi
Ci.

The idea behind this definition is that the normative con-
tent of r2 is fully included in r1. Thus r2 does not add
anything new to the system and it can be safely discarded.
In the example above, we can drop rule r, whose normative
content is included in r′′.

Formally a conclusion in DDLV is a tagged literal and
can have one of the following forms:

• +∆q to mean that the literal q is definitely provable
(i.e., using only facts and strict rules),

• −∆q when q is not definitely provable,

• +∂q, whenever q is defeasibly provable, and

• −∂q to mean that we have proved that q is not defea-
sibly provable.

Provability is based on the concept of a derivation. A
derivation is a finite sequence P = (P (1), . . . , P (n)) of
tagged literals satisfying four conditions (which correspond
to inference rules for each of the four kinds of conclusion).
Here we will give only the conditions for +∆ and +∂q.
P (1..i) denotes the initial part of the sequence P of length
i:

The inference rule for ±∆ are just those for forward
chaining of strict rules, thus they corresponds to detach-
ment or Modus Ponens for +∆ and a full search that
modus ponens cannot be applied for −∆.

To accommodate the new connective (⊗) in DDLV we
have to revise the inference mechanism of Defeasible Logic.
The first thing we have to note is that now a defeasible rule

4

can be used to derive different conclusions. For example
given the rule

r : A⇒ Os,bB ⊗Os,bC (2)

we can use it to derive Os,bB if we have A, but if we know A
and ¬B then the same rule supports the conclusion Os,bC.

With R[ci = q] we denote the set of rules where the head
of the rule is ⊗n

j=1cj where for some i, 1 ≤ i ≤ n, ci = q.
For example, given the rule r in (2), r ∈ R[c1 = Os,bB]
and r ∈ R[c2 = Os,bC]. Given an obligation Os,bA, we use
Os,bA to denote the complement of A, i.e., ∼A.

We are now ready to give the proof condition for +∂.

+∂: If P (i + 1) = +∂q then either
(1) +∆q ∈ P (1..i) or
(2) (2.1) ∃r ∈ R[ci = q]

(2.1.1) ∀a ∈ A(r) : +∂a ∈ P (1..i) and
(2.1.2) ∀i′ < i,∃a = ci′ : +∂a ∈ P (1..i)

(2.2) −∆∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[cj = ∼q] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P (1..i) or
(2.3.2) ∃j′ < j, ∀cj′ − ∂cj′ ∈ P (1..i) or
(2.3.3) ∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂a ∈ P (1..i)
∀k′ < k, +∂ck′ ∈ P (1..i) and t > s.

The above condition is very similar to the same condition
for basic defeasible logic given by Antoniou et al. (2001).
The main differences account for the ⊗ connective. What
we have to ensure is that reparations of violations are in
force when we try to prove them. For example if we want
to prove Os,bC given the rule r : A ⇒ Os,bB ⊗ Os,bC,
we must show that we are able to prove A, and that the
primary obligation B has been violated. In other words we
have already proved ¬B or any other formula incompatible
with B (Clause 2.1.2). A similar explanation holds true for
Clause 2.3.2 where we want to show that a rule does not
support an attack on the intended conclusion.

Conflicts often arises in contracts. What we have to
determine is whether we have genuine conflicts, i.e., the
contracts is in some way flawed or whether we have prima-
facie conflicts. A prima-facie conflict is an apparent con-
flict that can be resolved when we consider it in the context
where it occurs and if we add more information the conflict
disappears. For example let us consider the following two
rules:

r : PremiumCustomer ` OsDiscount
r′ : SpecialOrder ` Os¬Discount

saying that Premium Customers are entitled to a discount
(r), but there is no discount for goods bought with a special
order (r′). Is a Premium customer entitled to a discount
when she places a special order? If we only have the two
rules above there is no way to solve the conflict just using
the contract and there is the need of a domain expert to
advise the knowledge engineer about what to do in such
case. The logic can only point out that there is a conflict in

the contract. On the other hand, if we have an additional
provision

r′′ : PremiumCustomer ,¬Discount ` OsRebate

Specifying that if for some reasons a premium customer
did not received a discount then the customer is entitled
to a rebate on the next order, then it is possible to solve
the conflict, because the contract allows a violation of rule
r to be amended by r′′, using the merging mechanism of
rule (1).

The following rule is devised for making explicit conflict-
ing norms (contradictory norms) within the system:

r : Γ⇒ A r′ : ∆⇒ B

Γ, ∆⇒ ⊥
(3)

where3

1. for any formula C, {C,¬C} 6⊆ Γ ∪∆; and

2. it is not the case that either r > r′ or r′ > r; and
either

3. A = Os,bC and B = ¬Os,bC; or

4. A = ¬Os,bC and B = Os,bC; or

5. if A = Os,bC and B = Os,b¬C, then

• there is no rule Γ′ ` X such that either ¬C ∈ Γ′,
or X = Os,bC ⊗D and Γ′ ⊆ Γ ∪∆; and

• there is no rules ∆′ ` Y such that either C ∈ ∆′,
or Y = Os,b¬C ⊗D and ∆′ ⊆ Γ ∪∆.

The meaning of the first condition is that there is a situa-
tion where both rules are applicable, this means that the
states of affairs/preconditions they require are consistent.
The second condition ensures that the two rules have the
same strength, if one of them is stronger than the other,
we use the superiority relation to solve the conflict. For
conditions 3–5 we have to distinguish two different types
of conflicts. For conditions 3and 4, the conflict is that
for something we have at the same time an obligation and
there is no obligation for it, i.e., Os,bC and ¬Os,bC

4

For condition 4 the intuition is that given two rule, we
have a conflict if the normative content of the two rules
is opposite, such that none of them can be repaired. The
eventual reparations cannot happen, since the would re-
quire inconsistent states of affairs.

Once conflicts have been detected there are several ways
to deal with them. The first thing to do is to determine
whether we have a prima-facie conflict or a genuine con-
flict. As we have seen we have a conflict when we have
two rules with opposite conclusions. Thus a possible way

3For the application of this rules, we consider that all formulas
Ps,bA are transformed into ¬Os,b¬A.

4Alternatively we can say that something is at the same time
forbidden and permitted, given the equivalences between the deontic
operators, i.e., Fs,bC (forbidden C) is equivalent to Os,b¬C, and
Ps,bC (permitted C) is equivalent to ¬Os,b¬C.

5

to solve the conflict is to create a superiority relation over
the rules and to use it do “defeat” the weaker rule, or the
designer of the contract can use the information given by
the rule labelled as inconsistent to revise the contract to
avoid the problem.

3 Normal Forms and Canonical Forms

In the previous section we have presented the formal
machinery of DDLV. Given a formal representation of a
contract we can use the logic to reason with the conditions
of a contract. For example we can use it at run time to
determine whether a particular situation complies with the
contract. Similarly the inference engine provided by DDLV
can run dry tests at design time to verify correctness of
the representation of a contract (i.e., that the conclusions
obtained from a scenario are those expected by the designer
of the contract.)

In this section we examine how the formalism can be
used to analyse contracts and to reason about them so
that ambiguities in a contract can be identified.

It is possible that two contract domain engineers come
up with different representations for the same contract.
This might also be the case when one designer formalises
a (part of) contract at different times. DDLV can facili-
tate the comparison of two different versions of the same
contract to determine whether they are equivalent. DDLV
can also be used to ensure consistency between draft of
a contracts during the negotiation phase of the contract:
we compare the drafts of the contract of the negotiating
parties.

We introduce transformations of an DDLV representa-
tion of a contract to produce normal form of the same
(NDDLV). A normal form is a representation of a con-
tract based on an DDLV specification containing all con-
tract conditions that can generated/derived from the given
DDLV specification. The purpose of a normal form is to
“clean up” the DDLV representation of a contract, that is
to identify formal loopholes, deadlocks and inconsistencies
in it, and to make hidden conditions explicit.

As discuss before it is possible to have different versions
of a contract. For example,

Normal forms can be beneficial in comparing two ver-
sions of a contract for equivalence and compatibility. In
case we have different DDLV representations of a contract,
and their respective normal forms are not equivalent, then
it may be useful to consolidate them into a unifying ver-
sion that integrates the conditions expressed in the normal
forms. We call the resulting representation the canonical
form of the contract (CDDLV).

Since canonical forms are complete and hence contain
all conditions of a contract they can be mapped to an ex-
ecutable representation, aimed at the implementation and
monitoring of the same.

Notice that there can be many normal forms for a con-
tract, but there is only one canonical form, since normal
forms are the expansions of formal specifications of (poten-

tially a part of) contract. The idea is that a normal form
is the closure under some logical operations of a fragment
of a contract, while the canonical form is the closure of all
fragments of a contract (fragments can overlap).

Figure 1 illustrates a scenario where there are two equiv-
alent (formal) versions of the contract DDLV1 and DDLV2.
The two versions are equivalent since they produce the
same normal form (NDDLV1). On the other side DDLV3

corresponds to a normal form that does not coincide with
NDDLV1. Thus we can compare and integrate the two
normal forms to produce the canonical form of the con-
tract CDDLV, which in turn is mapped to an executable
program, or to a strorage or interchange format (e.g., in
RuleML).

Contract

DDLV1 DDLV1 DDLV3

NDDLV1 NDDLV2

CDDLV

RuleML

Figure 1: DDLV Normalisation Process

The normalisation process consists of the following three
steps:

1. Starting from a formal representation of the explicit
clauses of a contract we generate all the implicit con-
ditions that can be derived from the contract by ap-
plying the merging mechanism of DDLV, rule (1).

2. We can clean the resulting representation of the con-
tract by throwing away all redundant rules according
to the notion of subsumption, Definition 1.

3. Finally we use the conflict identification rule to label
and detect conflicts, using 3).

In general the process at step 2 must be done several times
in the appropriate order as described above. The nor-
mal form of a set of rules in DDLV is the fixed-point of
the above constructions. A contract contains only finitely
many rules and each rule has finitely many elements. In

6

addition Governatori and Rotolo (2006) to show that the
operation on which the construction is defined is mono-
tonic, thus according to standard set theory results the
fixed-point exists and it is unique. However, we have to
be careful since merging first and doing subsumption af-
ter produces different results from the opposite order (i.e.,
subsumption first and merging after), or by interleaving
the two operations.

If there is only one normal form of a contract then the
normal form coincides with the canonical form of the con-
tract. In case there are multiple normal forms of a contract,
for example if the contract has been built in a modular way
from several (sub-) contract templates (e.g.. based on the
idea by Hoffner and Field (2005)), we have to combine the
normal forms to check for their completeness and mutual
consistency. This means that we have to union the sets of
rules from each normal form and to repeat the fixed-point
construction of step 2, and then to identify the eventual
conflicts. After these operations we obtain the canonical
form of the contract. A domain expert can use the canon-
ical form to check that the representation of a contract
covers all aspects of the contract, and, in case of conflicts,
she suggests which interpretation is the more faithful to
the intent of the contract, and she can point out features
included in the contract but missing in its formal repre-
sentation.

Another application of the normalisation procedure is
that it can be used in the negotiation phase of a contract
life-cycle. Given a draft of a contract, to be negotiated
among parties, the parties involved in the negotiation pro-
vide their DDLV representations of the contract. Then the
parties exchange their DDLV versions of the contract, and
run the normalisation procedure. If the DDLV versions
converge into a unique normal form NDDLV (and so to
the canonical form of the contract or CDDLV), then each
party has the option to agree on the canonical form or to
propose amendments in case the party believes that some
features of the contract are not included in the canonical
form. If all parties agree then the canonical form can be
taken as the agree (formal) interpretation of the parties. In
case some parties propose extensions, the extended DDLV
formalisations can be shared by the parties, and the whole
process repeated. In case we have multiple normal forms
of the contract, then this means that there are conflicts
among the interpretations put forward by the parties. The
conflicts can be identified using the mechanism presented
in the previous section and the parties can then negotiate
solutions to the conflicts.5

4 Contracts in RuleML

In order to integrate the the DR-CONTRACT engine

5It is not the scope of the present paper to address contract ne-
gotiation, The only aspect we want to remark is that the method-
ology presented here can be used in the contract negotiation phase.
For models of contract negotiation see, among others, Reeves et al.
(2002); Rittgen (2008); Bacarin et al. (2008).

with Semantic Web technology we decided to use RuleML
(2009) as an open and vendor neutral XML/RDF syn-
tax for contracts. We tried to re-use as many features
of standard RuleML syntax as possible. However, since
some notions essential for the representation of contracts
are not present in standard RuleML we have created our
DR-CONTRACT DTD (Figure 2).6

<!ELEMENT Atom (Not?,Rel,(Ind|Var)*)>

<!ELEMENT Not (Rel,(Ind|Var)*)>

<!ELEMENT Rel (#PCDATA)>

<!ELEMENT Var (#PCDATA)>

<!ELEMENT Ind (#PCDATA)>

<!ELEMENT Fact (Atom)>

<!ELEMENT Imp ((Head,Body)|(Body|Head))>

<!ATTLIST Imp label ID #REQUIRED

strength (strict|

defeasible) #REQUIRED>

<!ELEMENT Body (And)>

<!ELEMENT And (Atom|Obligation|Permission)*>

<!ELEMENT Head (Atom|Obligation|

Permission|Behaviour)>

<!ELEMENT Behaviour ((Obligation)+,Permission?)>

<!ELEMENT Obligation (Not?,Rel,(Ind|Var)*)>

<!ATTLIST Obligation subject IDREF #REQUIRED

beneficiary IDREF #REQUIRED>

<!ELEMENT Permission (Not?,Rel,(Ind|Var)*)>

<!ATTLIST Permission subject IDREF #REQUIRED

beneficiary IDREF #REQUIRED>

Figure 2: DR-CONTRACT Basic DTD

The main limitations of RuleML is that it does not sup-
port modalities and it is unable to deal with violations.
The DR-CONTRACT RuleML DTD takes two different
types of literals: unmodalised predicates and modalised
literals. Thus to appropriately represent the deontic no-
tions of obligation and permission we introduce two new
elements <Obligation> and <Permission>, which are in-
tended to replace <Atom> in the conclusion of normative
rules. In addition deontic elements can be used in the body
of derivation rules. Hence we have to extend the definition
of <And> and <Head>. In this way it is possible to distin-
guish from brute fact and normative facts. As we have
already argued this is essential if one wants to use RuleML
to represent business contracts.

The elements <Var> and <Ind> are, respectively, place-
holders for individual variables to be instantiated by
ground values when the rules are applied and individual
constants. Individual constants can be just simple names
or URIs referring to the appropriate individuals. <Rel> is
the element that contains the name of the predicate. <Not>
is intended to represent classical negation. Thus its mean-
ing is that the atom it negates is not the case (or the propo-
sition represented by the atom is false and consequently the

6Although the current version of RuleML (Version 0.91) is based
on XML Schema, here due to space limitation and for ease of pre-
sentation, we will give the XML grammar using simplified DTD def-
initions.

7

proposition the element represents is true). RuleML con-
tains two types of negation, classical negation and negation
as failure Wagner (2002); Boley et al. (2001). However,
Antoniou et al. (2000c) show that negation as failure can
be simulated by other means in Defeasible Logic, so we do
not include it in our syntax.

RuleML provides facilities for many types of rule. How-
ever, we believe that the distinction has a pragmatic
flavour more than a conceptual one. In this paper we are
interested in the logical and computational aspects of the
rules, thus we decided to focus only on derivation rules
<Imp>.

Derivation rules allow the derivation of information from
existing rules. They are able to capture concepts not stored
explicitly in the existing information. For example, a cus-
tomer is labelled as a “Premium” customer when he buys
$10000 worth of goods. As such, the rule here states that
the customer must have spent $10000 on goods, thus deriv-
ing the information here that the customer is a “Premium”
customer. A derivation rule has an attribute strength
whose value ranges over strict and defeasible and it
denotes the type of rule to be associated to it when com-
puted in defeasible logic.

A derivation rule has two immediate sub-elements, Con-
dition (<Body>) and Conclusion (<Head>); the latter being
either an atomic predicate formula or a sequence of obliga-
tions, and the former a conjunction of formulas, meaning
that derivation rules consist of one more conditions and a
conclusion.

The ability to deal with violations and the obligations
arising in response to them is one of the key features in
the representation of business contracts. To this end the
conclusion of a derivation rule corresponding to a nor-
mative rule is a <Behaviour> element, defined as a se-
quence of <Obligation> and <Permission> elements with
the constraints that the sequence contains at most one
<Permission> element, and this element is the last of the
sequence. This construction is meant to simulate the be-
haviour of ⊗.

As we have alluded to in the previous section RuleML
provides a semantically neutral syntax for rules and differ-
ent types of rules can be reduced to other types and rules
in RuleML can be mapped to native rules in other formal-
ism. For the relationships between RuleML and Defeasible
Logic we will translate derivation rules (<Imp>s) into rules
in Defeasible Logic specifications. In this perspective a
derivation rule

<Imp label="r" strength="defeasible">

<Body>...</Body>

<Head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Deontic>An</Deontic>

</Behaviour>

</Head>

</Imp>

is transformed into a defeasible rule

r : body⇒ OA1 ⊗ · · · ⊗XAn

where X is the translation of the <Deontic> (meta) ele-
ment.

We give now an example of a rule based on the following
contract clause

6.1 The payment terms shall be in full upon re-
ceipt of invoice. Interest shall be charged at 5 %
on accounts not paid within 7 days of the invoice
date.

<Imp label="6.1"

strenght="defeasible">

<Body>

<And>

<Atom><Rel>Invoice</Rel>

<Var>InvoiceDate</Var>

<Var>Amount</Var>

</Atom>

</And>

</Body>

<Head>

<Behaviour>

<Obligation subject="Purchaser"

beneficiary="Supplier">

<Rel>PayInFullWithin7Days</Rel>

<Var>InvoiceDate</Var>

<Var>Amount</Var>

</Obligation>

<Obligation subject="Purchaser"

beneficiary="Supplier">

<Rel>PayWithInterest</Rel>

<Var>Amount * 1.05</Var>

</Obligation>

</Behaviour>

</Head>

</Imp>

<!ELEMENT And (Atom|Obligation|

Permission|Violation)*>

<!ELEMENT Violation EMPTY>

<!ATTLIST Violation rule IDREF #REQUIRED>

<!ELEMENT Behaviour ((Obligation+,Reparation)|

(Obligation*,Permission?))>

<!ELEMENT Reparation EMPTY>

<!ATTLIST Reparation penalty IDREF #REQUIRED>

<!ELEMENT Penalty ((Obligation+,Reparation)|

(Obligation*,Permission?))>

<!ATTLIST Penalty label ID #REQUIRED>

Figure 3: DR-CONTRACT Extended DTD

The new deontic tags in the DR-CONTRACT ex-
tended DTD in Figure 3 –<Reparation>, <Penalty> and
<Violation>– do not increase the expressive power of the
language but are included as convenient shortcuts. It is
possible to express a violation explicitly by saying that a
particular rule is triggered in response to a violation (i.e.,
when an obligation is not fulfilled). However, it can be
convenient to have facilities to represent violations directly
–just look at the formulation of Clause 5.3. In general a
violation can be one of the conditions that trigger the ap-
plication of a rule. Accordingly a <Violation> element
can be included in the body of a rule. A violation can-
not subsist without a rule that is violated by it. Hence

8

the attribute rule is a reference to the rule that has been
violated. Many contract languages, for example, the lan-
guages proposed by Grosof and Poon (2003) and Milosevic
et al. (2004), contain similar constructions. The activation
of such constructions/processes requires the generation of
a violation event/literal. On the contrary our approach
does not require it. All we have to do is to check for a
sequence of literals joined with the ⊗ operator where the
initial part of the sequence is not satisfied.

A <Violation> occurs in the body of rule and the rule
attribute refers to the violated rule. Every <Violation>
element can be replaced by the conjunction of the elements
in the <Body> of the violated rule, i.e., the rule the rule
attribute refers to, plus the negation of the un-modalised
elements of the elements in the <Head> of the violated rule.

<Imp label="v">

<body>B1</body>

<head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Obligation>An</Obligation>

</Behaviour>

</head>

</Imp>
<Imp label="r">

<body>

<And>

B2

<Violation rule="v"/>

</And>

</body>

<head>

<Behaviour>

<Obligation>C1</Obligation>

...

<Deontic>Cm</Deontic>

</Behaviour>

</head>

</Imp>

From the above RuleML code we generate two rules in
DDLV, namely

v : B1 ⇒ OA1 ⊗ · · · ⊗OAn,

r : B1, B2,¬A1, . . . ,¬An ⇒ OC1 ⊗ · · · ⊗XCm.

Eventually the two rules can be combined via the
schema (1) in

vr : B1, B2 ⇒ OA1 ⊗ · · · ⊗OAn ⊗OC1 ⊗ · · · ⊗XCm.

In some cases one might have recurrent general penalties
and it may be convenient to state them once and refer
back to them when they are called. To deal with this case
we introduce two additional elements <Reparation> and
<Penalty>. A <Reparation> element is just an empty el-
ement with a reference to a <Penalty> element that can
occur only after an obligation in a <Behaviour> element,
where a <Penalty> element is a premiseless rule with a nor-
mative head that is triggered only when its corresponding
violations are raised.

For example given the following fragment of a contract

<Imp label=’r’>

<body>...</body>

<head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Obligation>An</obligation>

<Reparation penalty="p"/>

</Behaviour>

</head>

</Imp>
<Penalty label="p">

<Obligation>B1</Obligation>

...

<Deontic>Bm</Deontic>

</Penalty>

the rule corresponding to it is

r : body⇒ OA1 ⊗ · · · ⊗OAn ⊗OB1 ⊗ · · · ⊗XBm.

5 DR-CONTRACT System Architecture

The system architecture of DR-CONTRACT is inspired
by the system architecture of the family of DR-DEVICE
applications developped by Skylogiannis et al. (2005);
Bassiliades et al. (2006) and consists of four main modules
(see Figure 4):

NDDLV Inference Engine

Contract
RuleML

Contract
RulMLRule Parser

Theory
Database

Contract
Ontology

DDLV
Theory Normaliser

Normalised
RuleML
Contract

Rule Loader

Inference Engine

RDF Extractor

RDF
Database

RDF/XML
User Document

RDF Triple Loader

Contract Monitoning
Engine

Figure 4: DR-CONTRACT System Architecture

1. A Rule Parser to transform a DR-CONTRACT com-
pliant document (a contract) into a theory to be
passed to the next module. The parser is based on
the XML processor and it is rather similar in nature
to the LogicLoader module of the DR-Device family
applications by Skylogiannis et al. (2005); Bassiliades
et al. (2006).

2. A DDLV normaliser. The normaliser takes as in-
put a set of DDLV theories (obtained from the pre-
vious step) and an RDF ontology. The ontology is

9

used to ensure that alignment of the predicates and
other resources used by the RuleML compliant con-
tracts. Then it iteratively merges rules in the theory
according to the inference rule 1 and then removes
rules subsumed by a more general rule according to
Definition 1. It repeats the cycle till it reaches the
fixed-point of such a construction (Governatori and
Rotolo (2006) prove that it allways exists and that it
is unique). Once a theory has been normalised the
normal/canonical form is saved to a repository (for
faster loading in successive calls), and the normalised
theory NDDLV is passed to the DDLV engine. In
addition the normaliser applies a transformation that
removes superiority relation by compiling it into new
rules (the technique used here is similar to the trans-
formation proposed by Antoniou et al. (2001)).

3. The RDF loader downloads/queries the input docu-
ments, including their schemata, and it translates the
RDF descriptions into fact objects according to the
RDF-NDDLV translation schema based on the DR-
CONTRACT DTD.

4. The NDDLV inference engine consists of two compo-
nents:

• The Rule Loader compiles the rules in a NDDLV
theory in objects. We distinguish two types of
objects: Rules and Literals or atoms. Each rule
object has associated to it a list of (pointers to)
modal literals (corresponding to head of the rule)
and a set of (pointers to) modal literals imple-
mented as an hash table. Each atom object has
associated to it four hash tables: the first with
pointers to the rules where the atom occurs pos-
itively in the head, the second with pointers to
the rules where the atom occurs negatively in the
head, the third with pointers to the rules where
the atom occurs positively in the body and the
last with pointers where the atom occurs nega-
tively in the body.

• The Inference Engine is based on an extension of
the Delores algorithm/implementation proposed
by Maher et al. (2001) as a computational model
of Basic Defeasible Logic. In turn:

– It asserts each fact (as an atom) as a conclu-
sion and removes the atom from the rules
where the atom occurs positively in the
body, and it “deactivates” the rules where
the atom occurs negatively in the body. The
complement of the literal is removed from
the head of rules where it does not occur
as first element. The atom is then removed
from the list of atoms.

– It scans the list of rules for rules where the
body is empty. It takes the first element
of the head and searches for rule where the
negation of the atom is the first element. If

there are no such rules then, the atom is ap-
pended to the list of facts, and removed from
the rules

– It repeats the first step.
– The algorithm terminates when one of the

two steps fails. On termination the algo-
rithm outputs the set of conclusions.7

5. Finally the conclusions are exported either to the user
or to a monitoring contract facility such as BCL by
Milosevic et al. (2004); Linington et al. (2004) as
an RDF/XML document through an RDF extractor.
Governatori and Milosevic (2006) show how to map
FCL specifications to BCL specifications. The map-
ping can be used to interface our framework with a
BCL contract monitoring implementation.

6 Conclusion and Related Works

In this paper we have presented a system architecture
for a Semantic Web based system for reasoning about con-
tracts. The architecture is inspired by the system architec-
ture of the DR-DEVICE family of applications. The main
differences between our approach and the DR-DEVICE is
in the use of an extended variant of Defeasible Logic. The
extensions are in the use of modal operator and a non clas-
sical operator for violations. The same difference applies
for the SweetDeal approach by Grosof (2004); Grosof and
Poon (2003). We have also argued that the extension with
modal (deontic) operators is not only conceptually sound
but also necessary to capture the semantics of contracts.
In the same way the implementation of the inference en-
gine is an extension of the algorithm used by the Delores
defeasible logic engine by Maher et al. (2001) to cope with
deontic operators and the ⊗ operator.

Strano et al. (2008) propose a rule based notation for
the specification of executable contracts. The language in-
cludes deontic operators, and it is equipped with facilities
to handle violations. The main difference with our work is
that violations are divided into two classes business viola-
tions and technical failures. While this offers a pragmati-
cally interesting feature, conceptually the distinction does
not add to the expressive power of the language. This can
easily be done in our approach. All we have to do is to
insert an additional literal/predicate in the antecedent of
the rule for eventually triggering a reparation.

Alberti et al. (2008) present a framework, called
SCIFF , for the representation of business contracts and
the formal verification of the resulting specification based
on abductive logic programming. One of the main aim of
the work is to determine whether a logic program, encoding

7Governatori et al. (2006b),Governatori and Rotolo (2008b)
proved that the algorithm runs in linear time. Each atom/literal
in a theory is processed exactly once and every time we have to
scan the set of rules, thus the complexity of the above algorithm is
O(|L| ∗ |R|), where L is the set of distinct modal literals and R is the
set of rules.

10

a contract, can reach a goal, where the goal is the objective
of a contract, what a contract has to achieve. In case a goal
cannot be reach from a given situation, SCIFF tries to ab-
duce some facts that are needed to achieve the goal. The
logic programming environment permits to verify the cor-
rectness and other properties of a contract. However, the
semantics of the abductive logic programs used to model
contracts is able to simulate simple deontic operators, but
not violations.

The handling of temporal aspects is a very delicate mat-
ter in contract monitoring. The current architecture does
not cover temporal reasoning. However, Governatori et al.
(2005) proposes an extension of Defeasible Logic that can
represent and reason with temporalised normative posi-
tions. In particular the framework offers facilities to ini-
tiate and terminate obligations, permissions, prohibitions
and other complex normative positions. We have planned
to study how to efficiently incorporate such features in our
Deontic Defeasible Logic of Violations.

Currently we have implemented prototypes of the
RuleParser based on the ARP parser of Jena (McBride
(2001)), the rule normaliser and the inference engine Java.
Experimental results show that the implementation of the
inference engine is able to deal with some of the bench-
mark theories of Maher et al. (2001) with theories in some
case with over 1,000,000 rules.

We also plan to integrate the framework with the VDR-
Device by Bassiliades et al. (2005) to provide a user-
friendly graphical RuleML editor, recommended by the
RuleML initiative, and supporting defeasible rule. How-
ever, the editor has to be extended to incorporate func-
tionalities to deal with the deontic operators required for
the representation of contracts.

Several authors propose the use of workflow and business
process management technology to implement e-contract.
Governatori et al. (2006a) show how to check the compli-
ance of a business process (modelled in BPMN) using FCL.
Given existing mapping between BPMN and BPEL, and
the proposed compliance checking mechanism it is possi-
ble to monitor the performance of contracts, implemented
as BPEL processes, and using DR-CONTRACT to check
that the runt time execution of the process implementing
the contract is conform to the conditions specified in the
contract.

While FCL was initially developed for modelling and
reasoning with contracts, the features it presents are gen-
eral enough to cover a wide class of normative specifica-
tions. Following the seminal work by Governatori et al.
(2006a), FCL has been proposed to check the compliance
of generic processes (not only processes corresponding to
contracts). The DDLV normaliser module and the NDDLV
inference engine can be use together with the algorithms
proposed by Governatori et al. (2008) and Governatori and
Rotolo (2008a) to check the compliance of business pro-
cesses.

Acknowledgements

The paper is an extended and revised version of Governa-
tori and Pham (2005a,b).

We would like to thank Antonino Rotolo and Zoran
Milosevic for their fruitful comments on previous versions
of this work. Thanks are also due to the CoALa05 anony-
mous referees for their valuable criticisms.

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence pro-
gram.

REFERENCES

Adi, A., Stoutenburg, S., and Tabet, S., editors (2005).
Rules and Rule Markup Languages for the Semantic
Web, First International Conference, RuleML 2005,
Galway, Ireland, November 10-12, 2005, Proceedings,
volume 3791 of Lecture Notes in Computer Science.
Springer.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello,
P., Montali, M., and Torroni, P. (2008). Expressing and
veryfing business contract with abductive logic program-
ming. International Journal of Electronic Commerce,
12(4):9–38.

Antoniou, G., Billington, D., Governatori, G., and Maher,
M. J. (2000a). A flexible framework for defeasible log-
ics. In Proc. American National Conference on Artificial
Intelligence (AAAI-2000), pages 401–405, Menlo Park,
CA. AAAI/MIT Press.

Antoniou, G., Billington, D., Governatori, G., and Maher,
M. J. (2001). Representation results for defeasible logic.
ACM Transactions on Computational Logic, 2(2):255–
287.

Antoniou, G., Billington, D., Governatori, G., and Maher,
M. J. (2006). Embedding defeasible logic into logic pro-
gramming. Theory and Practice of Logic Programming,
6(6):703–735.

Antoniou, G., Billington, D., Governatori, G., Maher,
M. J., and Rock, A. (2000b). A family of defeasible rea-
soning logics and its implementation. In Horn, W., edi-
tor, ECAI 2000. Proceedings of the 14th European Con-
ference on Artificial Intelligence, pages 459–463, Ams-
terdam. IOS Press.

Antoniou, G., Maher, M. J., and Billington, D. (2000c).
Defeasible logic versus logic programming without nega-
tion as failure. Journal of Logic Programming, 41(1):45–
57.

Bacarin, E., Madeira, E. R., and Medeiros, C. B. (2008).
Contract e-negotiation in agricultural supply chains. In-
ternational Journal of Electronic Commerce, 12(4):71–
97.

11

Bassiliades, N., Antoniou, G., and Vlahavas, I. (2006). A
defeasible logic reasoner for the Semantic Web. Interna-
tional Journal on Semantic Web and Information Sys-
tems, 2:1–41.

Bassiliades, N., Kontopoulos, E., and Antoniou, G. (2005).
A visual environment for developing defeasible rule bases
for the semantic web. In Adi et al. (2005), pages 172–
186.

Boley, H., Tabet, S., and Wagner, G. (2001). Design
rationale for ruleml: A markup language for semantic
web rules. In Cruz, I. F., Decker, S., Euzenat, J., and
McGuinness, D. L., editors, Proceedings of SWWS’01,
The first Semantic Web Working Symposium, pages
381–401.

Governatori, G. (2005). Representing business contracts
in RuleML. International Journal of Cooperative Infor-
mation Systems, 14(2-3):181–216.

Governatori, G., Hoffmann, J., Sadiq, S., and Weber,
I. (2008). Detecting regulatory compliance for busi-
ness process models through semantic annotations. In
Ardagna, D., editor, BPM 2008 Workshops, volume 7 of
LNBIP, pages 5–17. Springer.

Governatori, G., Maher, M. J., Billington, D., and Anto-
niou, G. (2004). Argumentation semantics for defeasible
logics. Journal of Logic and Computation, 14(5):675–
702.

Governatori, G. and Milosevic, Z. (2006). A formal analysis
of a business contract language. International Journal
of Cooperative Information Systems, 15(4):659–685.

Governatori, G., Milosevic, Z., and Sadiq, S. (2006a).
Compliance checking between business processes and
business contracts. In Hung, P. C. K., editor, 10th Inter-
national Enterprise Distributed Object Computing Con-
ference (EDOC 2006), pages 221–232. IEEE Computing
Society.

Governatori, G. and Pham, D. H. (2005a). DR-
CONTRACT: An architecture for e-contracts in defea-
sible logic. In Bartolini, C., Governatori, G., and Milo-
sevic, Z., editors, 2nd EDOC Workshop on Contract Ar-
chitectures and Languages (CoALA 2005). IEEE Digital
Library. Published on CD.

Governatori, G. and Pham, D. H. (2005b). A semantic web
based architecture for e-contracts in defeasible logic. In
Adi et al. (2005), pages 172–186.

Governatori, G. and Rotolo, A. (2002). A Gentzen system
for reasoning with contrary-to-duty obligations. a pre-
liminary study. In Jones, A. J. and Horty, J., editors,
∆eon’02, pages 97–116, London. Imperial College.

Governatori, G. and Rotolo, A. (2004). Defeasible logic:
Agency, intention and obligation. In Lomuscio, A. and
Nute, D., editors, Deontic Logic in Computer Science,
number 3065 in LNAI, pages 114–128, Berlin. Springer.

Governatori, G. and Rotolo, A. (2006). Logic of violations:
A Gentzen system for reasoning with contrary-to-duty
obligations. Australasian Journal of Logic, 4:193–215.

Governatori, G. and Rotolo, A. (2008a). An algorithm for

business process compliance. In Francesconi, E., Sar-
tor, G., and Tiscornia, D., editors, Legal Knowledge and
Information Systems, volume 189 of Frontieres in Arti-
ficial Intelligence and Applications, pages 186–191. IOS
Press.

Governatori, G. and Rotolo, A. (2008b). BIO logical
agents: Norms, beliefs, intentions in defeasible logic.
Journal of Autonomous Agents and Multi Agent Sys-
tems, 17(1):36–69.

Governatori, G., Rotolo, A., and Padmanabhan, V.
(2006b). The cost of social agents. In Stone, P. and
Weiss, G., editors, 5th International Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 513–
520, New York. ACM Press.

Governatori, G., Rotolo, A., and Sartor, G. (2005). Tem-
poralised normative positions in defeasible logic. In
Gardner, A., editor, 10th International Conference on
Artificial Intelligence and Law (ICAIL05), pages 25–34.
ACM Press.

Griethuysen, J. v., editor (1982). Concepts and Termi-
nology for the Conceptual Schema and the Information
Base. Publ. nr. ISO/TC97/SC5/WG3-N695, ANSI, 11
West 42nd Street, New York, NY 10036.

Grosof, B. N. (2004). Representing e-commerce rules via
situated courteous logic programs in RuleML. Electronic
Commerce Research and Applications, 3(1):2–20.

Grosof, B. N. and Poon, T. C. (2003). SweetDeal: rep-
resenting agent contracts with exceptions using XML
rules, ontologies, and process descriptions. In Proceed-
ings of the twelfth international conference on World
Wide Web, pages 340–349. ACM Press.

Hoffner, Y. and Field, S. (2005). Transforming agreements
into contracts. International Journal of Cooperative In-
formation Systems, 14(2-3):217–244.

Lee, R. M. (1988). A logic model for electronic contracting.
Decision Support Systems, 4:27–44.

Linington, P. F., Milosevic, Z., Cole, J. B., Gibson, S.,
Kulkarni, S., and Neal, S. (2004). A unified behavioural
model and a contract language for extended enterprise.
Data & Knowledge Engineering, 51(1):5–29.

Maher, M. J., Rock, A., Antoniou, G., Billignton, D.,
and Miller, T. (2001). Efficient defeasible reasoning
systems. International Journal of Artificial Intelligence
Tools, 10(4):483–501.

McBride, B. (2001). Jena: Implementing the RDF model
and syntax specification. In Proc 2nd Int. Workshop on
The Semantic Web.

Milosevic, Z., Gibson, S., Linington, P. F., Cole, J., and
Kulkarni, S. (2004). On design and implementation of
a contract monitoring facility. In Benatallah, B., ed-
itor, First IEEE International Workshop on on Elec-
tronic Contracts, pages 62–70. IEEE Press.

Padmanabhan, V., Governatori, G., Sadiq, S., Colomb,
R. M., and Rotolo, A. (2006). Process modelling: The
deontic way. In Stumptner, M., Hartmann, S., and
Kiyoki, Y., editors, Conceptual Modelling 2006. Pro-

12

ceedings of the Thirds Asia-Pacific Conference on Con-
ceptual Modelling (APCCM2006), number 53 in CR-
PIT, pages 75–84, Sydney. Australian Computer Science
Communications.

Reeves, D. M., Wellman, M. P., and Grosof, B. N. (2002).
Automated negotiation from declarative contract de-
scriptions. Computational Intelligence, 18(4):482–500.

Rittgen, P. (2008). A contract-based architecutre for busi-
ness networks. International Journal of Electronic Com-
merce, 12(4):115–145.

RuleML (2009). RuleML. The Rule Markup Initiative.
Skylogiannis, T., Antoniou, G., Bassiliades, N., and Gov-

ernatori, G. (2005). DR-NEGOTIATE - a system for
automated agent negotiation with defeasible logic-based
strategies. In 2005 IEEE International Conference on
e-Technology, e-Commerce, and e-Services, pages 44–49.
IEEE Computer Society.

Strano, M., Molina-Jiménez, C., and Shrivastava, S. K.
(2008). A rule-based notation to specify executable elec-
tronic contracts. In Bassiliades, N., Governatori, G., and
Paschke, A., editors, RuleML, volume 5321 of Lecture
Notes in Computer Science, pages 81–88. Springer.

van der Torre, L. and Tan, Y.-H. (1997). The many faces
of defeasibility. In Nute, D., editor, Defeasible Deontic
Logic, pages 79–121. Kluwer, Dordrecht.

Wagner, G. (2002). How to design a general rule markup
language. In Proceedings of XML Technology for the
Semantic Web (XSW 2002), volume 14 of LNI, pages
19–37. GI.

13

