2009 IEEE International Enterprise Distributed Object Computing Conference

Modelling and Reasoning Languages
for Social Networks Policies

Guido Governatori and Renato Iannella
NICTA, Queensland Research Laboratory,
St Lucia, QLD, 4072, Australia
{guido.governatori,renato } @nicta.com.au

Abstract—Policy languages (such as privacy and rights) have
had little impact on the wider community. Now that Social
Networks have taken off, the need to revisit Policy languages
and realign them towards Social Networks requirements has
become more apparent. One such language is explored as to its
applicability to the Social Networks masses. We also argue that
policy languages alone are not sufficient and thus they should
be paired with reasoning mechanisms to provide precise and
unambiguous execution models of the policies. To this end we
propose a computationally oriented model to represent, reason
with and execute policies for Social Networks.

Index Terms—Social Networks; Open Digital Rights Language
(ODRL); Policy; Privacy; Rights; Defeasible Logic;

I. INTRODUCTION

The Web undoubtedly has developed an impressive collec-
tion of technologies for supporting sophisticated information
sharing and representation. Social Networks — via the innova-
tive use of Web 2.0 features — have also taken the wider web
community by surprise with such rapid uptake and widespread
sharing of user-generated content.

A major lesson from Social Networks is that by offering
“simplicity and efficiency” we can attract mass audiences [?].
Equally, a major lesson from the Semantic Web is that we
can “deliver information directly to people for whom the
information was relevant” by adopting a semantically-aware
social networking stack across Social Network services [?].
The challenge now is to bring these two communities together
in such a way that the technology (e.g., Semantic Web) meets
the needs of a mass audience (e.g., Social Networks).

Social Networks have highlighted one particular area of
concern:

“They provide complex and indeterminate mech-
anisms to specific privacy and other policies for
protecting access to personal information, and allow
information to be shared that typically would not
follow social and professional norms.” [?]

There have been numerous attempts to solve this problem
in the past [?] but none have been really successful, nor
applicable to the Social Networks community. A new approach
is required to manage seamless policy interaction for the Social
Networks masses.

This raises four key challenges for policy languages:

o Policy Expression — how to unambiguously define the
terms and conditions of a policy.

1541-7719/09 $25.00 © 2009 IEEE
DOI 10.1109/EDOC.2009.19

193

« Policy Transparency — how to ensure all parties are aware
of the policy and its implications.

« Policy Conflict — how to detect potential incompatibilities
between dependent policies.

o Policy Accountability — how to track policy exceptions
and obligations.

With the emergence of Social Network interactions, the four
policy challenges now need to be aligned with this new
environment. Traditionally policy languages were designed
based on a transaction environment. That is, the content and
parties would enter into some explicit agreement under the
control of some policy management system, for example, a
DRM system buying music. However the Social Networks
user base is more inclined to share content with friends and
colleagues without any predetermined agreement. The focus
has moved away from the transaction-based constrained policy
(e.g., play the video 5 times over a 2 month period) to a regime
based on sharing content to dynamic groups of people (e.g.,
any friend can comment on these photos.)

In this paper we first look at the Policy Expression Chal-
lenge through the emerging development of the Open Digital
Rights Language (ODRL). We then look at a specific Use
Case from Social Networks and apply the ODRL policy
language to validate its expressiveness. We also investigate
a computationally oriented approach for the formalisation and
execution of policies. We then show the mapping between the
formal model and ORDL. We conclude with a summary of
the future research work and potential directions for policy
challenges for Social Networks.

II. ODRL VERSION 2.0

The Open Digital Rights Language (ODRL) Version 2.0
Model [?] has evolved over the past years from a specific rights
management language to a more generic policy language.
Figure 1 shows the core entities of the underlying information
model. Like many other policy languages at the time, ODRL
was modeled on the transaction-based policy environment. The
new version of ODRL is motivated to broaden this scope to
incorporate the unique needs of Social Network policies.

The key ideas of the ODRL model that are applicable to
Social Networks include:

o A clear identification of the Asset (for any type of Social
Network content).

@) CO‘ pute
1(!) I
& SOCIety

Authorized licensed use limited to: University of Queensland. Downloaded on October 4, 2009 at 20:44 from IEEE Xplore. Restrictions apply.

Rights

uid

NextRights
type

<>
inherit

conflict
undefined

Target 1

Asset

Target

uid
inherit

0.* 0

h
Rightsholder

0.
1

0. y

Assigner 1

Permission

Pa

rty

1

Assigner Prohibition

Assignee uid

Assignees

1

Assignee
Assignees

0.* 1

Assigne

1

r

0.*
Assignee
Assignees
1

0. 1
0.r

Constraint

name

operator
rightOperand

status

0.

Object

value

measure

Fig. 1.

« Actions that are allowed to be performed (Permissions)
or not allowed to be performed (Prohibitions) can be
articulated.

o All the Parties involved can be specified (who assigns
rights to whom).

« Any Duties on Parties can be stipulated (their obligations
that must be meet).

« Constraints can be enumerated for any of the key entities.
The ODRL Version 2.0 Model is defined abstractly in UML.
This was undertaken to ensure that the semantics of the policy
language could standalone and was not dependent on any other
underlying encoding model or syntax. Additionally, it focusses
the work on Policy semantics and does not try and force the
semantics into another framework.

The ODRL Version 2.0 Model will be implementable via
both XML Schema and Semantic Web specifications but is
still under development. However, it has reached the stage
where it can be applied to different scenarios to validate its
applicability to various communities.

III. SOCIAL NETWORKS REQUIREMENTS

We looked at two popular Social Networks (FaceBook and
Flickr) and reviewed the types of conditions (or constraints)
that can be applied to their content. Figure 2 shows examples
of these conditions from these two Social Networks. The
findings were also consistent with Professional Networks, such
as LinkedIn and Plaxo.

What is clear from Figure 2 is that the policy decision
points are focussed on constraining who the end user party

194

ODRL Version 2.0 Model

is. That is, the content owner can specify these general types
of limitations for who can access their content:

Only the content owner (i.e., no one else)

Specific (named) friends and colleagues (both allowed
and not allowed)

All direct friends or colleagues

Your second level friends or colleagues (i.e., friends of
friends)

All Groups (that the content owner is a member of) or
some Groups

Everyone (i.e., public)

IV. SocIAL NETWORKS USE CASE

We looked at a specific use case [?] from the W3C Future
of Social Networks Workshop (Jan 2009) in which:
“Alice wants to give access to her wedding pictures
only to people that are fellows on both Flickr and
Twitter and that have a blog she commented at least
twice during the last 10 days.”
This use case also follows the similar theme in which the
rights are bestowed on a constrained group of people. In this
case, the group has additional constraints and requirements,
specifically that Alice has commented on their Blog in the
past 10 days. We then looked at expressing this use case in
ODRL Version 2.0.

V. ODRL 2.0 MEETS WEB 2.0 (AKA SOCIAL NETWORKS)

Deconstructing the Alice Use Case leads to the following
language expression needs:

Authorized licensed use limited to: University of Queensland. Downloaded on October 4, 2009 at 20:44 from IEEE Xplore. Restrictions apply.

Edit Photo Album Privacy

8 Who Can See This?

] Everyone on Facebook

V|

Friends
() Friends of Friends
My friends and their friends can see this.

@ Only Friends

Only friends can see this.

() Some Friends
Choose specific friends who can see this.

Who can see these items?
[Acting on 1 item)

- Only You (Private)

® Anyone (Public)
Who can comment?

& Only You

(O Only Me = 8

Only you and selected networks can see ' Your Friends and/or Famlly

this.

. 6 Your Contacts
Networks _ Any Flickr User (Recommended)

(Some of My Networks...J Who can add notes & tags?

™ Australia

[Queensland > Only You

[1HKU —~

© Except These People

John Doe 23l

Cancel

Your Friends andfor Family
® Your Contacts (Recommended)
- Any Flickr User

1 (WS B] CHANGE PERMISSIONS

Fig. 2. FaceBook (left) and Flickr (right) Privacy Settings

« Identifying the Wedding Photos

o Alice is assigning rights

« The permission is viewing

o The recipient of the permission is the group of people
that meet all of these criteria

— Members of Flickr and Twitter, and

Have Blog sites, and

Alice has commented at least twice on these blogs,
In the last 10 days.

Figure 3 shows this instance of the Alice Use Case expressed
in the ODRL Version 2.0 Model.

The instance shows the Wedding Photos Asset being the
subject of a View Permission assigned by the Party Alice. The
Assignee of the policy is the generic ODRL “anyone” Party
that has three specific Duties that must be meet. These Duties
then filter the “anyone” Party to the specific parties that match
Alice’s use case. In this case they must be members of Flickr
and Twitter and have a Blog. The latter then has an additional
constraint that Alice has commented on their blog in the past
10 days.

This mapping exercise of the Use Case has highlighted some
additional requirements for the ODRL Version 2.0 evolution.
Specifically, it has identified the need for a generic “anyone”
party and membership semantics that need to be part of the
ODRL Core Metadata (currently in Working Draft status).

VI. ODRL 2.0 MEETS WEB 3.0 (AKA SEMANTIC WEB)

ODRL Version 1.1 has been widely deployed primarily in
XML (with over a billion mobile handsets supporting the
OMA profile of the ODRL language). ODRL Version 2.0
will also support an RDF/XML binding to capitalize on the

Semantic Web opportunities. The binding will require some
hard decisions on how to best fit the ODRL model into the
RDF Model. For example, below is a potential RDF/XML
encoding of the Blog Duty:

<odrl:Duty>
<odrl:action rdf:resource="odrl:hasA"/>
<odrl:object rdf:parseType="Resource">
<rdf:value rdf:resource="odrl:TRUE"/>
<odrl:measure rdf:resource="urn:Blog"/>
</odrl:object>
<odrl:container rdf:parseType="Collection">
<odrl:constraint rdf:about="urn:odrl:AND"/>
<odrl:constraint rdf:ID="constraint-01"/>
<odrl:constraint rdf:ID="constraint-02"/>
<odrl:constraint rdf:ID="constraint-03"/>
</odrl:container>
</odrl:Duty>

Some encoding issues will need to be addressed, such as
how to best fit the ODRL Container model into the RDF
model. For example, should the RDF Collection include the
ODRL Boolean operator as a member or are there better ways
that RDF supports this.

A major issue will be the mapping of the ODRL Per-
mission/Prohibition model into RDF to infer policy conflicts.
ODRL Version 2.0 has introduced a precedence mechanism
to guide conflict detection. How this can be best modelled
in RDF will be an interesting challenge in itself. We can
imagine an extension to the Alice use case where she has also
given permission for anyone who is a member of MySpace
full access to all her photos. This will be in conflict with her
original use case as now “all her photos” includes her wedding
photos. How can we detect this and warn her of this conflict?

Authorized licensed use limited to: University of Queensland. Downloaded on October 4, 2009 at 20:44 from IEEE Xplore. Restrictions apply.

Rights
uid=urn:exp:0231
type=odrl:agree

Asset

uid=urn:alice:wedding

Party V_ Target T
uid=urn:alice Assigner Lomussion
Ass'q;naa Party
> uid=odrl:anyone
V
Action
" Assignee
name=odrl:view Container
operation=odrl:AND

%

Duty J(—‘

Duty

Duty

— =

i

TS,

Action Object Action

Object Action Object

name=odrl:memberOf measure=urn:Flickr name=odrl:memberOf

value=odrl: TRUE

measure=urn:Twitter name=odrl:hasA

value=odrl:TRUE

measure=urn:Blog
value=odr:TRUE

Container
operation=odrl:AND

e

Constraint

Constraint Constraint

name=sn:NumComments

name=sn:CommentsBy
operator=odrl:EQUAL
rightOperand=urn:alice

operator=0dri:GTE
rightOperand=2

name=sn:PostDays
operator=odrl.LTE
rightOperand=10

Fig. 3.

VII. COMPUTING POLICIES

In the previous sections we have examined some essential
requirements for a policy language for social networks, and
we have seen to what extent ODRL meets those requirements.
However, a policy language has to be implemented to identify
the properties enjoyed by resources and members in a network.
In this section we provide a computationally oriented approach
to this problem. In addition we examine some further aspects
relevant to the deployment of executable specifications for
policies in social networks.

Our proposal to address the issue of how to implement a pol-
icy language is based on FCL, a logical approach proposed by
Governatori [?] for the representation of an executable contract
language and further proposed for the study of compliance of
business processes [?].

To illustrate some of the features needed we extend the
Alice example.

Suppose that the network offers members the facility to
create blacklists where a member can list members of the
networks that cannot access the member resources, and the

Alice Use Case in ODRL Version 2.0

user can specify restrictions on the resources available to
members in a blacklist. Alice decided that blacklisted members
cannot access her resources at all. Moreover, suppose that
Alice put Bob in the photo blacklist, but she has posted a
few recent comments on Bob’s blog, and Bob is a member of
the categories listed in Alice conditions to access her wedding
pictures.

Consider another example: The network has another feature.
Each user has a profile page, and the user has to upload a
picture to the profile page, and this picture is available to
everybody in the network. Members who do not comply with
the above conditions cannot access other members’ private
resources.

Alice puts a picture of her wedding as her public photo.
Carl is another Flickr and Twitter fellow of Alice (not in her
blacklist, and she repeatedly posted in his blog during the past
week) who does not have his public picture in his profile.

The above examples illustrated some important features we
are faced with when we want to implement a policy language
in social networks (and not only in social networks).

« policy conditions have a normative nature;

196

Authorized licensed use limited to: University of Queensland. Downloaded on October 4, 2009 at 20:44 from IEEE Xplore. Restrictions apply.

policy conditions can have exceptions;

conditions in policy can conflict with each other;
policies in a social networks can come from different
sources;

policy conditions sometimes involve violations of other
policy conditions.

A. Executable Policy Specifications

We briefly present the basic of FCL (Formal Contract
Logic). FCL results from the combination of an efficient
rule base non-monotonic logic formalism (Defeasible Logic
[?]1, [?]) and a Deontic Logic of violations [?]. Deontic
Logic is the branch of logic studying normative like concepts
like obligations, permissions, prohibitions, These notions
correspond to the right, duty, prohibition notions illustrated in
the previous sections. Deontic logic extends first order logic
with the deontic operators O, P and F denoting obligations,
permissions and prohibitions. The deontic operators satisfy the
following equivalence relations:

OA=-P-A —-O-A=PA O-A=FA -PA=FA

The operators also satisfy the following relationship OA —
PA, meaning that if A is obligatory, then A is permitted. This
relationship can be used to ensure checking of the internal
consistency of the obligations in a set of norms, i.e., whether
it is possible to execute obligations without doing something
that is forbidden. FCL then extend deontic logic by considering
directed deontic operators. This means that each operator can
be indexed by the subject and the beneficiary of the normative
concept. Thus for example O?A means that s has the obligation
of B with respect to b, where A could be the statement “prevent
disclosure of personal information”. Similarly ;B means that
B is forbidden for s (where B, for example, means ‘“access
private data”). The deontic logic component of FCL gives us
the ability to handle the normative aspects of ODRL, as well
as the aspect of how to handle violations. Often the treatment
of violations is not properly addressed in other deontic logics
(see [?] for a detailed presentation of the problems related to
violations in deontic logic).

Typically normative systems, of which policies are partic-
ular instances, include conditions that are activated to com-
pensate breaches of other conditions. To capture this aspect
we introduce the reparation (or compensation) operator ,
to be used in expression like OA @ OB. The meaning of an
expression like OA ® OB is that we have the obligation of
A (i.e., OA), but in case this is violated, i.e., we have the
negation of A, i.e., A, then the obligation OB is in force.
This means that achieving B compensate for failing to fulfill
the obligation OA. Since the compensation is an obligation as
well, it is possible that it is violated, and so it can trigger
an additional compensation. To accommodate this we allow
chains of obligation compensation of any length. Thus, for
example we can have expressions like

OA1®---®0A,

197

(also called obligations chains or simply chains) saying that
the main obligation is OA; but in case this is violated, then
the next obligation is OAj, and even if this is violated, then
we trigger the obligation OA3 and so on. In these chains we
can have obligations and prohibitions'. Permissions can appear
only as the last element of a chain. The reason for this is that
it is not possible to have a violation of a permission, and so
it is meaningless to have a compensation for something that
cannot be violated.

The defeasible logic component of FCL allows us to cap-
ture exceptions and conflicts, more specifically the inference
mechanism of FCL is an extension of Defeasible Logic.

Defeasible logic, originally created by Donald Nute [?] with
a particular concern about efficiency and implementation, is
a simple and efficient rule based non-monotonic formalism.
Over the years, the logic has been developed and extended, and
several variants have been proposed to model different aspects
of normative reasoning and it encompasses other formalisms
for normative reasoning.

The main intuition of the logic is to be able to derive
“plausible” conclusions from partial and sometimes conflicting
information. Conclusions are fentative conclusions in the sense
that a conclusion can be withdrawn when we have new pieces
of information.?

The knowledge in a Defeasible Theory is organised in facts
and rules and superiority relation.

« Facts are indisputable statements.

Defeasible rules are rules that can be defeated by contrary
evidence.

The superiority relation is a binary relation defined over
the set of rules. The superiority relation determines the

relative strength of two (conflicting) rules.

The meaning of a defeasible rule, like

Ay,... Ay =>C
is that normally we are allowed to derive C given Ay,...,A,,
unless we have some reasons to support the opposite conclu-
sion (i.e., we have a rule like By,...,B;, = —C).

Defeasible Logic is a “skeptical” non-monotonic logic,
meaning that it does not support contradictory conclusions.
Instead, Defeasible Logic seeks to resolve conflicts. In cases
where there is some support for concluding A but also support
for concluding —A, Defeasible Logic does not conclude either
of them (thus the name skeptical). If the support for A has
priority over the support for —A then A is concluded.

A defeasible conclusion is a tentative conclusion that might
be withdrawn by new pieces of information, or in other
terms it is the ‘best’ conclusion we can reach with the given
information. In addition, the logic is able to tell whether a
conclusion is or is not provable. Thus, it is possible to have
the following two types of conclusions:

IPlease remember that prohibitions can be represented as obligations, FA =
O-A.
2For a full presentation of the logic, refer to [?], [?]

Authorized licensed use limited to: University of Queensland. Downloaded on October 4, 2009 at 20:44 from IEEE Xplore. Restrictions apply.

« Positive defeasible conclusions: meaning that the conclu-
sions can be defeasible proved;
o Negative defeasible conclusions: meaning that one can
show that the conclusion is not even defeasibly provable.
A (positive) defeasible conclusion A can be derived if there is
a rule whose conclusion is A, whose prerequisites (antecedent)
have either already been proved or given in the case at hand
(i.e., facts), and any stronger rule whose conclusion is —A (the
negation of A) has prerequisites that fail to be derived. In other
words, a conclusion A is (defeasibly) derivable when:
1) A is a fact; or
2) there is an applicable defeasible rule for A, and either
a) all the rules for —A are discarded (i.e., not appli-
cable) or
every applicable rule for —A is weaker than an
applicable strict or defeasible rule for A.

b)

A rule is applicable if all elements in the body of the rule are
derivable (i.e., all the premises are positively provable), and a
rule is discarded if at least one of the elements of the body is
not provable (or it is a negative defeasible conclusion).

The main difference between Defeasible logic and FCL is
that in FCL the conclusion of a rule is an obligation chain
(possibly a trivial chain where we have only one element).

Accordingly the reasoning mechanism to derive conclusion
is an extension of that for defeasible logic. In defeasible logic
the conclusion of a rule is a single literal and not a reparation
chain. Thus, the condition that OA appears in the conclusion of
a rule means in defeasible logic that OA is the conclusions of
the rule. FCL extends defeasible logic with reparation chains,
thus, we have to extend the reasoning mechanism of defeasible
logic to accommodate the additional construction provided
by FCL. To prove OA, we have to consider all rules with
a reparation chain for OA, where for all elements before OA
in the chain, the negation of the element is already provable.
Thus to prove A given a rule

P,....P,=0Ci® ®0Cy,®0AR 0D @ ® 0Dy,

we have that Py,..., P, must be all provable, and so must be
-Cy,...,C,. For the full details see [?].

B. FCL at Work for Social Networks

In this section we will examine how the feature of FCL
presented above address some important aspects of social
network policies.

1) Exceptions: The superiority relation can be used to
model exceptions. An exception is a situation where we have
some specific information that prevents the derivation of the
otherwise normal conclusion. Consider the following policy
for handling accessing resources in a social network: ‘Member
resources on the network can be access by everybody, unless
a resource is declared private’.

This condition can be expressed by the default rule

r1 : resource(x) = P access(x)

The predicate resource states that x is a resource in the
network, and then, the rule states that if something is a

198

resource then access is permitted to it. In this case we can use
an undirected permission to represent the condition (everybody
in the network can access the resource, thus there is no need
to specify a specific beneficiary for it). To capture the unless
part of the policy, expressing the exception, we can use the
rule

ry @ private(x),—owner(x,y) = Oy—access(x)

The meaning of this rule is that if something is a private
resource and somebody (y) is not the owner of the resources,
then it is forbidden to y to access the resource. Remember that
a prohibition is an obligation followed by a negation, i.e., O—.

In case both rules apply, then we cannot conclude anything,
because the two rules are in conflict, something is at the same
time permitted and prohibited. Thus to express that we have an
exception we have to specify the superiority relation between
the two rules. In this case, we can specify that r; < r,, making
thus r, stronger than r;. This means that in case both fire, r,
takes precedence over ri, and we can derive the conclusion of
r1. Accordingly we can deny access to private resources.

2) Conflicts: In a social network we can have policies from
multiple sources, for example we can have multiple policies
from networks in a social network aggregator as well as
policies from individual members. As result it is possible that
policies are in conflict with other policies.

Let us go back to the Alice scenario. Her rule about access
to her wedding pictures can be formalised as follows;

p1 - wedding_photo(x), flickr(y),twitter(y),
blog(z,y), posted(a,z,11), posted(a,z,12),

t1 > Now — 10,1, > Now — 10 = P,access(x) (1)

The predicates in the rule mean, respectively: x is the id of a
wedding photo, y is a friend of Alice in Flickr, y is a friend of
Alice in Twitter, z is the blog of y, Alice posted to the z’s blog
at time #1, and at time #,, and #; and #, are less than ten days
ago (we assume that Now returns the current time in days).
Then the rule says that if all the conditions above are satisfied
then y is permitted to access the picture whose id is x.

Let us suppose now that x is a private wedding picture and
that the other conditions in the wedding rule p; are satisfied.
Given the two rules we have a possible conflict between the
two rules. According to rule p; access should be granted. On
the other hand, the restriction on private resources, rule ry,
prevents granting the access to the picture.

Again to solve the issue we have to use the superiority
relation. Here one has to set that r; < pj.

Notice that conflicts can arise both from rules from different
sources, but, as in the case of exceptions, they can originate
from one and the same source, as the following rule illustrate.

Consider the policy about blacklisting ‘if a member is a
in blacklist then the member cannot access private resources’.
This rule can be expressed as follows:

p2 : private(x),blacklist(y) = Oy—access(x)

Authorized licensed use limited to: University of Queensland. Downloaded on October 4, 2009 at 20:44 from IEEE Xplore. Restrictions apply.

Now to be effective this rule must be at least as strong as the
rule to grant access (i.e, rule p;). Thus we further need that
P2 < p1.

3) Policies for Violations: The conditions that ‘each mem-
ber has to upload a picture to the profile page, and this picture
is available to everybody in the network’ and ‘members who
do not comply with the above conditions cannot access other
members’ private resources’, can be expressed by the rule:

r3 1 = Oxpublish_public ® Ox—access(y)

This rule establishes that a member has the obligation to
publish at least one picture (visible to everybody), otherwise,
the member cannot access any private resource. Accordingly,
in case the first condition, i.e., Oy publish_public, is violated,
meaning that we have —publish_public (meaning that there
are no public pictures). Then we can trigger the compensation
(the sanction preventing the member to access other’s member
private resources). Notice that then the rule is in conflict with
rp and p;. So to make it effective we have to specify that
r3 > rp and r3 > pi.

C. Discussion

The reasoning mechanism presented above is to determine
the obligations, permissions and prohibitions in force for a
particular situation. The mechanism is based on the proof con-
ditions of defeasible logic, which offers a constructive proof
theory [?], [?]. The important aspect is that the constructive
proof theory allows us to look at the derivation of a conclusion
and to see the rules and facts used to derive a conclusion, and
thus we can provide a full justification of why we obtained a
specific outcome [?]. This feature caters for the accountability
of our approach to policies.

Closely related is the efficiency and scalability. We envision
that a policy server for a social network should be able
to handle a large amount of requests. Thus the efficiency
of the reasoning mechanism is of paramount importance.
The outcome of an FCL policy can be computed in linear
time [?]. Efficient implementations exist, and the most recent
implementations fully support Semantic Web standards (RDF,
RuleML) [?], and extensions to deal with normative conditions
have been proposed [?].2

Defeasible logic and FCL have been proposed and applied
for the representation of different aspects of normative rea-
soning (modelling contracts [?], modelling complex normative
notions such as normative power and delegation [?], modelling
norm changes [?], and business process compliance [?], [?]).
Thus the principles on which FCL is based on seem to offer a
faithful and conceptual representation of normative concepts
such as those required to model policies in social networks.
Therefore FCL offers a transparent framework for the domain
under analysis.

In addition to the reasoning mechanism to derive the
normative requirements in force, FCL has other reasoning

3A Java based open source of Defeasible logic and FCL is available at
http://spin.nicta.org.au/demo/SPINdle/.

199

mechanisms. For example, it is equipped with mechanisms to
generate normal forms for a set of rules [?]. The normal form
makes explicit all rules that can be obtained by combining
given rules, and then removes redundant rules, i.e., rules
whose meaning is included in the meaning of other rules. The
generation of a normal form has several advantages for the
design of policies. Since all conditions are made explicit, then
it is possible to identify conflicts between policy condition, and
at the same time it is possible to have a complete picture for
the terms and conditions of a policy [?]. Accordingly, normal
forms accounts for both the transparency and coverage of a
policy.

VIII. MAPPINGS BETWEEN ORDL AND FCL

We briefly discuss the mapping between ODRL and FCL, in
particular we examine the correspondence between classes in
ODRL and elements of FCL. In FCL we have three categories
of objects: propositions, deontic operators and rules. Atomic
propositions are built from predicates plus terms (where a
term is either a variable or a constant), where variables and
constants denote elements of the domain. For ODRL and social
networks the domain of individuals consists of the resources
and members of the social networks. Thus we can establish
a mapping between the ODRL classes Asset and Party and
individuals in FCL. Predicates describe properties of element
of the domain and relationship between them, thus an FCL
theory modelling the policy of a social network has to provide
predicates corresponding to the attributes of the classes and
to the relationships between classes. Thus for example the
Rightholder relationship between the classes Asset and Party
is modelled by the predicate owner(x,y). In addition we create
a predicate for each instance of the class Action, and we create
appropriate predicates for instances of the class Constraint.

The classes Permission, Duty, and Prohibition are mapped
to the deontic operators P and O (and O— for instances of Pro-
hibition). As we have seen in Section ?? the deontic operators
bound literals (the literals should be a literal corresponding to
one action, though in general in FCL a deontic operator can
bind in general any type of proposition), and can be indexed
by subject and beneficiary. These correspond to assignee and
assignor in ODRL.

Finally a rule is a relationship between a set of instances
of the class Constraint and an instance of any of the classes
Permission, Obligation and Prohibition.

In Section ?? we have seen that FCL can handle violations,
using the ® operator, and the superiority relation (<), but
these do not have counterparts in ODRL. This, however, is
not a real limitation. As it was discussed in [?] the violation
operator is useful for the design of the policy (i.e., when using
the normal form to investigate the characteristics of a policy),
but it is not required for the computation of the requirements.
Indeed a rule A = OB® OC is equivalent to the following two
rules A= OB and A,—~B = OC.

For the superiority relation, [?] shows how to take a set of
rule with superiority theory in Defeasible Logic and transform
it into an equivalent theory without superiority relation.

Authorized licensed use limited to: University of Queensland. Downloaded on October 4, 2009 at 20:44 from IEEE Xplore. Restrictions apply.

While the two constructors above are not required to specify
the rule comprising a policy, we suggest that ODRL is
extended to include elements corresponding to such notions
to improve how policies are defined, relieving policy authors
(where for social networks, for a private profile the designer
can be the user itself) for the burned of specifying how to
implement her policy conditions, and thus resulting in a more
conceptual language for policies.

IX. FUTURE WORK

The work to date has focussed on developing an extensible
Policy Language with the ODRL Version 2.0 Model and the
Policy Expression challenge. There is still work to be per-
formed on validating ODRL’s expressibility and we plan to use
new Social Network-based use cases from the FP7 PrimeLife
Project [?]. We will also work on expressing the ODRL Model
in RDF/XML to support Semantic Web applications of the
ODRL policy language.

Next on the list is the Policy Transparency challenge and we
plan to investigate mechanisms to best inform Social Network
users on the terms of policies that apply to the content they
are using. The Policy Conflict challenge will be the most
formidable as it will push ontology matching to the extreme,
but is where the Semantic Web technologies will provide the
most benefit. For example, in the Alice use case, if one of the
potential assignees has a privacy policy on their blog account
that suppresses key information (e.g., the number of postings)
then how can we deal with the inconsistency with the original
policy?

Finally, the Policy Accountability challenge will bring the
most acceptance of policies in Social Networks as we move
away from the traditional enforcement regimes and become
consistent with society norms. Such as allowing for freedoms
on Social Networks but making sure the user is aware of the
consequences of their actions (or inactions). We don’t wish to
preclude the possibility of policy violations and at the same
time provide a trusted experience for all Social Network users.
A key challenge for all the community.

X. CONCLUSION

Social Networks provide a unique circumstance now for
the Policy and Semantic Web communities to apply previ-
ous research outcomes and implementation experiences at a
scale not yet seen. The results will be significant but must
address the needs of users first otherwise the uptake of these
technologies will be a lost opportunity. We have shown some
promising beginnings with a widely-deployed rights language
that has evolved to become a general policy language. We
hope that the future extensions and iterations of the language,
and supporting systems, will rise to meet the challenges of the
burgeoning policy-oriented semantic web.

ACKNOWLEDGEMENTS

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications

200

and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program and the
Queensland Government.

REFERENCES

[11 A. Mikroyannidis, “Toward a social Semantic Web,” IEEE Compute,
pp. 113-115, November 2007.

J. Breslin and S. Decker, “The future of social networks on the internet,”
IEEE Internet Computing, pp. 86-90, Nov/Dec 2007.

R. Iannella, “Industry challenges for social and professional net-
works,” in W3C Workshop on the Future of Social Networking, Barcel-
lona, 15-16 January 2009, http://www.w3.0rg/2008/09/msnws/papers/
nicta-position-paper.pdf.

G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok,
“Semantic Web languages for policy representation and reasoning: A
comparison of Kaos, Rei, and Ponder,” in 2nd International Semantic
Web Conference (ISWC2003), ser. LNCS, no. 2870. Springer, 2003,
pp. 419-437.

S. Guth and R. Iannella, ODRL V2.0 — Core Model. ODRL
Initiative. Draft Specification: 16 January 2009, http://odrl.net/2.0/
DS-ODRL-Model.html.

A. Passant, P. Kérger, M. Hausenblas, D. Olmedilla, A. Polleres, and
S. Decker, “Enabling trust and privacy on the social web,” in W3C Work-
shop on the Future of Social Networking, Barcellona, 15-16 January
2009, http://www.w3.0rg/2008/09/msnws/papers/trustprivacy.html.

G. Governatori, “Representing business contracts in RuleML,” Interna-
tional Journal of Cooperative Information Systems, vol. 14, no. 2-3, pp.
181-216, 2005.

G. Governatori, Z. Milosevic, and S. Sadiq, “Compliance checking be-
tween business processes and business contracts,” in /0th International
Enterprise Distributed Object Computing Conference (EDOC 2006).
IEEE Computing Society, 2006, pp. 221-232.

G. Antoniou, D. Billington, G. Governatori, and M. Maher, “Represen-
tation results for defeasible logic,” ACM Transactions on Computational
Logic, vol. 2, no. 2, pp. 255-287, 2001.

, “Embedding defeasible logic into logic programming,” Theory
and Practice of Logic Programming, vol. 6, no. 6, pp. 703-735, 2006.
G. Governatori and A. Rotolo, “Logic of violations: A Gentzen system
for reasoning with contrary-to-duty obligations,” Australasian Journal
of Logic, vol. 4, pp. 193-215, 2006.

J. Carmo and A. J. Jones, “Deontic logic and contrary to duties,”
in Handbook of Philosophical Logic, 2nd Edition, D. Gabbay and
F. Guenther, Eds. Dordrecht: Kluwer, 2002, vol. 8, pp. 265-343.

D. Nute, “Defeasible logic,” in Handbook of Logic in Artificial Intelli-
gence and Logic Programming, 1994, vol. 3.

G. Antoniou, A. Bikakis, M. Dimaresis, M. Genetzakis, G. Georgalis,
G. Governatori, E. Karouzaki, N. Kazepis, D. Kosmadakis, M. Kritso-
takis, G. Lilis, A. Papadogiannakis, P. Pediaditis, C. Terzakis, R. Theo-
dosaki, and D. Zeginis, “Proof explanation for a nonmonotonic semantic
web rules language,” Data & Knowledge Engineering, vol. 64, no. 3,
pp. 662-687, 2008.

M. Mabher, “Propositional defeasible logic has linear complexity,” Theory
and Practice of Logic Programming, vol. 1, pp. 691-711, 2001.

N. Bassiliades, G. Antoniou, and I. Vlahavas, “A defeasible logic
reasoner for the Semantic Web,” International Journal on Semantic Web
and Information Systems, vol. 2, pp. 1-41, 2006.

G. Governatori and A. Rotolo, “A computational framework for institu-
tional agency,” Artificial Intelligence and Law, vol. 16, no. 1, pp. 25-52,
2008.

G. Governatori, A. Rotolo, R. Riveret, M. Palmirani, and G. Sartor,
“Variants of temporal defeasible logic for modelling norm modifica-
tions,” in Proceedings of 11th International Conference on Artificial
Intelligence and Law, 2007, pp. 155-159.

S. Sadiq, G. Governatori, and K. Naimiri, “Modelling of control objec-
tives for business process compliance,” in BPM 2007, ser. LNCS, no.
4714. Springer, 2007, pp. 149-164.

G. Governatori and Z. Milosevic, “A formal analysis of a business
contract language,” International Journal of Cooperative Information
Systems, vol. 15, no. 4, pp. 659-685, 2006.

C. Bournez and G. Neven, Draft Requirements for Next
Generation Policies. PrimeLife Deliverable H5.1.1, 11 December
2008, http://www.primelife.eu/images/stories/deliverables/h5.1.1-
policy_requirements-public.pdf.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

Authorized licensed use limited to: University of Queensland. Downloaded on October 4, 2009 at 20:44 from IEEE Xplore. Restrictions apply.

